
CMSC423: Bioinformatic Algorithms,
Databases and Tools

Exact string matching:
Computing Z values in linear time

• Recap: Z values capture similarity between beginning of
string and internal parts of the string

• Recap: Z values can be used to speed up matching

• Stop and think: Write an algorithm to compute the Z values
of a string.

Naïve computation of Z values

Z[1]?

AAAGGTACAGTTCCCTCGACACCTACTACCTAAG

compare T[1] with T[0], T[2] with T[1], etc. until mismatch

in this case Z[1] = 2

Z[2] ?

Same process applies: compare T[2] to T[0], T[3] to T[1], etc.
until mismatch

Stop and Think! What is the worst-case run-time of this algorithm?

Can Z values be computed in linear time?

AAAGGTACAGTTCCCTCGACACCTACTACCTAAG

The naïve process is still expensive:
T[2] is compared when computing both Z[1] and Z[2].

Trick to computing Z values in linear time:
each comparison must involve a character that was not compared

 before

Intuition: once we match a character we have learned something about
it and do not need to look at it again.

Conjecture: Since there are only m characters in the string, the overall
of comparisons will be O(m).

Basic idea: 1-D dynamic programming

Induction: Can Z[i] be computed with the help of Z[j] for j < i?

i

j

Assume there exists j < i, such that j + Z[j] – 1 > i
then Z[i – j + 1] provides information about Z[i]

If there is no such j, simply compare characters T[i..] to T[0..]
since they have not been seen before.

i-j+1

Z[j]

Three cases
Let j < i be the coordinate that maximizes j + Z[j] – 1
(ihe Z[j] that extends the furthest)

I. Z[i – j + 1] < Z[j] – i + j – 1 => Z[i] = Z[i – j + 1]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]
A C C

II. Z[i – j + 1] > Z[j] – i + j – 1 => Z[i] = Z[j] –i + j - 1

III. Z[i – j + 1] = Z[j] – i + j – 1 => Z[i] = ??, compare from
 i + Z[i – j + 1]

A C

???

Time complexity analysis
• Why do these tricks save us time?

1. Cases I and II take constant time per Z-value computed –
total time spent in these cases is O(n)

2. Case III might involve 1 or more comparisons per Z-value
 however:
 - every successful comparison (match) shifts the

rightmost character that has been visited
 - every unsuccessful comparison terminates the “round”

and algorithm moves on to the next Z-value

 total time spent in III cannot be more than # of characters in
the text

Overall running time is O(n)

NEXT: KMP algorithm

	CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 2
	Slide 2
	Can Z values be computed in linear time?
	Slide 4
	Basic idea: 1-D dynamic programming
	Three cases
	Slide 7
	Slide 8

