CMSC 423: Data Clustering

Part 3

• Distance-based clustering: need definition of distance between datapoints (e.g. individual genes)

 g_8

10.2

12.8

1.1

12.0

12.1

9.1

0.0

11.4

12.4

1.0

87

5.1

10.1

8.1

9.5

8.5

5.6

0.0

9.1

8.3

9.3

g9

6.1

2.0

10.5

1.6

7.7

8.3

0.0

1.1

11.4 12.4

10.6

g₁₀

7.0

1.0

11.5

1.1

11.6

8.5

9.3

1.1

	1 hr	2 hr	3 hr							
g_1	10.0	8.0	10.0		g ₁	g ₂	g ₃	g 4	g ₅	g ₆
g ₂	10.0	0.0	9.0	<i>g</i> ₁	0.0	8.1	9.2	/./	9.3	2.3
g ₃	4.0	8.5	3.0	g_2	8.1 9.2	12.0	0.0	0.9 11.2	0.7	9.5 11.1
g 4	9.5	0.5	8.5	84	7.7	0.9	11.2	0.0	11.2	9.2
g ₅	4.5	8.5	2.5	\boldsymbol{g}_5	9.3	12.0	0.7	11.2	0.0	11.2
g 6	10.5	9.0	12.0	\boldsymbol{g}_6	2.3	9.5	11.1	9.2	11.2	0.0
g ₇	5.0	8.5	11.0	g_7	5.1	10.1	8.1	9.5	8.5	5.6
g 8	3.7	8.7	2.0		10.2	12.8	1.1 10.5	12.0	1.0 10.6	12.1
g 9	9.7	2.0	9.0	g ₁₀	7.0	1.0	11.5	1.1	11.6	8.5
g ₁₀	10.2	1.0	9.2	510						

- Distance-based clustering: need definition of distance between data-points (e.g. individual genes)
- Some measures:
 - Euclidean distance
 - Manhattan distance
 - Pearson correlation

$$D(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$
$$D(x, y) = \sum_{i} |x_i - y_i|$$

$$D(x,y) = \frac{E[(x - \mu_x)(y - \mu_y)]}{\sigma_x \sigma_y}$$

• Clustering: group together data points that are most similar and repeat

$$D(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$
$$D(x, y) = \sum_{i} |x_i - y_i|$$

- Key element: how do you compute distance between two clusters, or a point and a cluster?
- UPGMA/average neighbor (average linkage)
 - Average distance between all genes in the two clusters
- Furthest neighbor (complete linkage)
 - Largest distance between all genes in clusters
- Nearest neighbor (single linkage)
 - Smallest distance between all genes in clusters
- Ward's distance
 - Inter-cluster distances is variance of inter-gene distances

- Irrespective of distance choices, algorithm is the same
 - 1. Compute inter-gene/cluster distances
 - 2. Join together pairs of genes/clusters with smallest distance
 - 3. Recompute distances to include the newly created cluster
 - 4. Repeat until all points are in a cluster
- Output of program is a tree

 g_4 g_5 g_6 g_7 \boldsymbol{g}_1 g_2 g_3 g_8 **g**9 g_{10} 2.3 8.1 9.2 7.7 9.3 5.1 10.2 7.0 0.06.1 g_1 8.1 12.0 12.0 9.5 12.8 2.0 1.0 0.9 10.1 g_2 0.0 8.1 g_3 9.2 12.0 1.2 0.7 11.1 1.1 10.511.5 9.2 7.7 11.2 9.5 12.0 1.6 1.1 (0.9)1.2**g**4 0.08.5 11.2 9.3 12.0 10.6 11.6 g_5 1.2 0.01.0 U 2.3 9.2 11.2 0.0 5.6 12.1 7.7 8.5 9.5 **g**6 1.1 5.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 0.1 **g**7 g_8 0.2 12.8 2.0 2.1 9.1 0.0 11.4 12.4 1.0 6.1 2.0 7.7 8.3 1.1 0.5 1.6 0.6 **g**9 11.4 0.07.0 11.5 11.6 8.5 9.3 12.4 1.1 0.0 1.0 1.1 g_{10}

 $g_2 \ g_{3}, g_5$ g_4 g_6 g_7 g_1 g_8 g_9 g_{10} 2.3 10.2 9.2 5.1 0.0 8.1 7.7 6.1 7.0 g_1 9.5 12.8 2.0 8.1 12.0 10.11.0 0.9 g_2 0.0 9.2 12.0 0.0 11.1 8.1 1.0 10.511.5 g_{3}, g_{5} 11.2 9.2 9.5 12.0 1.6 1.1 0.9 11.2 0.0 7.7 **g**4 12.1 7.7 2.3 9.5 9.2 0.05.6 11.1 8.5 **g**6 5.1 9.5 5.6 0.0 9.1 8.3 9.3 10.1 **g**7 8.1 12.8 g_8 10.2 9.1 11.4 12.4 1.0 2.0 2.1 0.02.0 7.7 8.3 11.4 0.0 1.1 6.1 10.51.6 **g**9 7.0 8.5 9.3 12.4 1.1 11.5 1.1 0.0 1.0 g_{10}

 $g_1 \ g_{2'} \ g_4 \ g_{3'} \ g_5$ **g**₆ **g**₇ g_8 **g**9 g_{10} 2.3 7.7 9.2 5.1 10.2 6.1 7.0 0.0 **g**1 7.7 11.2 9.2 9.5 12.0 0.0 1.0 1.6 $g_{2'}g_4$ 9.2 11.2 8.1 1.0 10.511.5 0.0 11.1 **g**₃, **g**₅ 2.3 9.2 12.1 7.7 8.5 5.6 11.1 g_6 0.05.1 9.1 8.3 9.5 **g**₇ 8.1 5.6 0.0 9.3 10.2 g_8 12.0 0.0 11.4 12.4 1.0 2.1 9.1 6.1 1.1 **g**9 1.6 10.5 8.3 7.7 11.4 0.0 7.0 1.1 1.0 11.5 8.5 9.3 12.4 0.0 g_{10}

- Irrespective of distance choices, algorithm is the same
 - 1. Compute inter-gene/cluster distances
 - 2. Join together pairs of genes/clusters with smallest distance
 - 3. Recompute distances to include the newly created cluster
 - 4. Repeat until all points are in a cluster
- Output of program is a tree
- Cluster sets- defined by "cut" nodes any subset of internal tree nodes defines a set of clusters – the sets of leaves in the corresponding subtrees
- Choice of cut can be tricky usually problem-specific

Example: microbiome analysis

Other clustering approaches

- Principal component analysis
 - Identify a direction (vector V) such that the projection of data on V has maximum variance (first principal component)
 - repeat (vector V' != V such that project of data on V' has maximum variance)
 - Usually plot the first 2 or 3 principal components

Other clustering approaches

- Self-organizing maps
 - Neural-network based approach
 - Output layer of network are points in a low-dimensional space
- Graph theoretic
 - Points are connected by edges representing strength of "connection" (e.g. similarity or dissimilarity)
 - Pick clusters such that number of "similar" edges spanning boundaries is minimized, or number of "dissimilar" edges within each cluster is minimized
- Markov chain clustering
 - basic idea a random walk through a graph will stay within a local strongly connected region