
Fun with Phylogenetic Trees
Erin Molloy

University of Maryland, College Park

Guest Lecture in CMSC 423 Bioinformatics

April 25, 2023

1

Who has seen a similar picture?

2

Evolution is not a line!

Who has seen a similar picture?

3

Evolution is a tree!

4
Evolutionary tree = phylogeny

most recent

common ancestor of

human & chimpanzee

Evolution is a tree!

5
Evolutionary tree = phylogeny

6

Evolutionary trees are used in
bioinformatics analyses.

microbe identification
[Nguyen et al., 2014; Amato et al., 2019;

Meyer et al., 2019; Shah et al., 2021]
tumor evolution

[Satas et al., 2021]

[Qiu et al., 2019; Hodcroft et al., 2021]

vaccine design

& strain tracking

7

Evolutionary trees are reconstructed
from data.

8

Morphology Genomics

Darwin’s finches

9

1,000 bat genomes

5,000 insect genomes

>60,000 vertebrate genomes

10,000 plant genomes

10

~1.5 million eukaryotic genomes

in next 10 years

11

A S S E M B L I N G T H E T R E E O F L I F E

H A R N E S S I N G L I F E ’ S H I S T O R Y T O B E N E F I T S C I E N C E A N D S O C I E T Y

“Resolving the Tree of Life is

unquestionably among the

most complex scientific

problems facing biology and

presents challenges much

greater than sequencing the

human genome.”

From: “Assembling the Tree of Life: Harnassing Life’s

History to Benefit Science and Society,” NSF, 2002.

12

RESEARCH ARTICLE
◥

HUMAN GENOMICS

The complete sequence of a human genome
Sergey Nurk1†, Sergey Koren1†, Arang Rhie1†, Mikko Rautiainen1†, Andrey V. Bzikadze2, Alla Mikheenko3,
Mitchell R. Vollger4, Nicolas Altemose5, Lev Uralsky6,7, Ariel Gershman8, Sergey Aganezov9‡,
Savannah J. Hoyt10, Mark Diekhans11, Glennis A. Logsdon4, Michael Alonge9, Stylianos E. Antonarakis12,
Matthew Borchers13, Gerard G. Bouffard14, Shelise Y. Brooks14, Gina V. Caldas15, Nae-Chyun Chen9,
Haoyu Cheng16,17, Chen-Shan Chin18, William Chow19, Leonardo G. de Lima13, Philip C. Dishuck4,
Richard Durbin19,20, Tatiana Dvorkina3, Ian T. Fiddes21, Giulio Formenti22,23, Robert S. Fulton24,
Arkarachai Fungtammasan18, Erik Garrison11,25, Patrick G. S. Grady10, Tina A. Graves-Lindsay26,
Ira M. Hall27, Nancy F. Hansen28, Gabrielle A. Hartley10, Marina Haukness11, Kerstin Howe19,
Michael W. Hunkapiller29, Chirag Jain1,30, Miten Jain11, Erich D. Jarvis22,23, Peter Kerpedjiev31,
Melanie Kirsche9, Mikhail Kolmogorov32, Jonas Korlach29, Milinn Kremitzki26, Heng Li16,17,
Valerie V. Maduro33, Tobias Marschall34, Ann M. McCartney1, Jennifer McDaniel35, Danny E. Miller4,36,
James C. Mullikin14,28, Eugene W. Myers37, Nathan D. Olson35, Benedict Paten11, Paul Peluso29,
Pavel A. Pevzner32, David Porubsky4, Tamara Potapova13, Evgeny I. Rogaev6,7,38,39, Jeffrey A. Rosenfeld40,
Steven L. Salzberg9,41, Valerie A. Schneider42, Fritz J. Sedlazeck43, Kishwar Shafin11, Colin J. Shew44,
Alaina Shumate41, Ying Sims19, Arian F. A. Smit45, Daniela C. Soto44, Ivan Sović29,46, Jessica M. Storer45,
Aaron Streets5,47, Beth A. Sullivan48, Françoise Thibaud-Nissen42, James Torrance19, Justin Wagner35,
Brian P.Walenz1, Aaron Wenger29, Jonathan M. D. Wood19, Chunlin Xiao42, Stephanie M. Yan49,
Alice C. Young14, Samantha Zarate9, Urvashi Surti50, Rajiv C. McCoy49, Megan Y. Dennis44,
Ivan A. Alexandrov3,7,51, Jennifer L. Gerton13,52, Rachel J. O’Neill10, Winston Timp8,41, Justin M. Zook35,
Michael C. Schatz9,49, Evan E. Eichler4,53*, Karen H. Miga11,54*, Adam M. Phillippy1*

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of
the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the
genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence
of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects
errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene
predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric
satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes,
unlocking these complex regions of the genome to variational and functional studies.

T
he current human reference genomewas
released by the Genome Reference Con-
sortium (GRC) in 2013 andmost recently
patched in 2019 (GRCh38.p13) (1). This
reference traces its origin to the publicly

funded Human Genome Project (2) and has
been continually improved over the past two
decades. Unlike the competing Celera effort
(3) and most modern sequencing projects
based on “shotgun” sequence assembly (4),

the GRC assembly was constructed from se-
quenced bacterial artificial chromosomes
(BACs) that were ordered and oriented along
the human genome by means of radiation hy-
brid, genetic linkage, and fingerprint maps.
However, limitations of BAC cloning led to
anunderrepresentation of repetitive sequences,
and the opportunistic assembly of BACs de-
rived from multiple individuals resulted in a
mosaic of haplotypes. As a result, several GRC
assembly gaps are unsolvable because of in-
compatible structural polymorphisms on their
flanks, and many other repetitive and poly-
morphic regions were left unfinished or in-
correctly assembled (5).
The GRCh38 reference assembly contains

151 mega–base pairs (Mbp) of unknown se-
quence distributed throughout the genome,
including pericentromeric and subtelomeric
regions, recent segmental duplications, ampli-
conic gene arrays, and ribosomal DNA (rDNA)
arrays, all of which are necessary for funda-
mental cellular processes (Fig. 1A). Some of the
largest reference gaps include human satellite
(HSat) repeat arrays and the short arms of all
five acrocentric chromosomes, which are repre-
sented in GRCh38 as multimegabase stretches
of unknown bases (Fig. 1, B and C). In addi-
tion to these apparent gaps, other regions of
GRCh38 are artificial or are otherwise in-
correct. For example, the centromeric alpha
satellite arrays are represented as computa-
tionally generated models of alpha satellite
monomers to serve as decoys for resequencing
analyses (6), and sequence assigned to the
short arm of chromosome 21 appears falsely
duplicated and poorly assembled (7). When
comparedwith other humangenomes,GRCh38
also shows a genome-wide deletion bias that
is indicative of incomplete assembly (8). De-
spite finishing efforts from both the Human
GenomeProject (9) andGRC (1) that improved
the quality of the reference, there was limited

COMPLETING THE HUMAN GENOME

Nurk et al., Science 376, 44–53 (2022) 1 April 2022 1 of 10

1Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. 2Graduate Program in
Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA. 3Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University,
Saint Petersburg, Russia. 4Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. 5Department of Bioengineering, University of California, Berkeley,
Berkeley, CA, USA. 6Sirius University of Science and Technology, Sochi, Russia. 7Vavilov Institute of General Genetics, Moscow, Russia. 8Department of Molecular Biology and Genetics, Johns Hopkins University,
Baltimore, MD, USA. 9Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. 10Institute for Systems Genomics and Department of Molecular and Cell Biology, University of
Connecticut, Storrs, CT, USA. 11UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. 12University of Geneva Medical School, Geneva, Switzerland. 13Stowers Institute for
Medical Research, Kansas City, MO, USA. 14NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. 15Department of Molecular and Cell
Biology, University of California, Berkeley, Berkeley, CA, USA. 16Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA. 17Department of Biomedical Informatics, Harvard Medical School,
Boston, MA, USA. 18DNAnexus, Mountain View, CA, USA. 19Wellcome Sanger Institute, Cambridge, UK. 20Department of Genetics, University of Cambridge, Cambridge, UK. 21Inscripta, Boulder, CO, USA.
22Laboratory of Neurogenetics of Language and The Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA. 23Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
24Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA. 25University of Tennessee Health Science Center, Memphis, TN, USA. 26McDonnell Genome Institute, Washington
University in St. Louis, St. Louis, MO, USA. 27Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. 28Comparative Genomics Analysis Unit, Cancer Genetics and Comparative
Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. 29Pacific Biosciences, Menlo Park, CA, USA. 30Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore KA, India. 31Reservoir Genomics LLC, Oakland, CA, USA. 32Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
33Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. 34Heinrich Heine University Düsseldorf, Medical Faculty, Institute for Medical
Biometry and Bioinformatics, Düsseldorf, Germany. 35Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA. 36Department of Pediatrics, Division of
Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA. 37Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. 38Department of Psychiatry,
University of Massachusetts Medical School, Worcester, MA, USA. 39Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia. 40Cancer Institute of New Jersey, New Brunswick, NJ, USA.
41Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. 42National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD,
USA. 43Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA. 44Genome Center, MIND Institute, Department of Biochemistry and Molecular Medicine, University of California, Davis,
CA, USA. 45Institute for Systems Biology, Seattle, WA, USA. 46Digital BioLogic d.o.o., Ivanić-Grad, Croatia. 47Chan Zuckerberg Biohub, San Francisco, CA, USA. 48Department of Molecular Genetics and
Microbiology, Duke University School of Medicine, Durham, NC, USA. 49Department of Biology, Johns Hopkins University, Baltimore, MD, USA. 50Department of Pathology, University of Pittsburgh, Pittsburgh,
PA, USA. 51Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia. 52Department of Biochemistry and Molecular Biology, University of Kansas Medical School, Kansas City,
MO, USA. 53Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 54Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
*Corresponding author. Email: eee@gs.washington.edu (E.E.E.); khmiga@ucsc.edu (K.H.M.); adam.phillippy@nih.gov (A.M.P.)
†These authors contributed equally to this work. ‡Present address: Oxford Nanopore Technologies Inc., Lexington, MA, USA.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of M

aryland C
ollege Park on A

ugust 25, 2022

The human genome
project “ended” in
2003 with ~92%…

And then it took ~20
more years to
“complete” final ~8%.

13

We cannot analyze these forthcoming
BIG datasets with the methods we have.

14

Challenge #1:

Too many species

Best methods are heuristics for NP-
hard optimization problems

Solution space (i.e., set of all
possible phylogenetic trees) grows
exponentially in number of species!

15

Challenge #1:

Too many species

Best methods are heuristics for NP-
hard optimization problems

Solution space (i.e., set of all
possible phylogenetic trees) grows
exponentially in number of species!

leaves #trees

 4 3

 5 15

 6 105

 7 945

 8 10,395

 9 135,135

 10 2,027,025

16

chromosomes

Challenge #2:

Genome-scale data

More data per species

Error, missing data, etc. [Molloy & Warnow, 2017]

Modeling evolution of single gene vs.
genome (many genes)

17

18

Addressing

these

challenges
requires
interdisciplinary
research!

computer
science

statistics +
probabilistic
modeling

evolutionary
genomics +
data science

Agenda

19

Part 1: Perfect Phylogenies

Part 2: Small Parsimony Problem & Fitch’s Algorithm

Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

Tandy Warnow

University of Illinois at

Urbana-Champaign

Material in slides based on
Computational Phylogenetics by
Prof. Tandy Warnow.

Acknowledgements

20

21

Let’s begin with a formal definition of
phylogenetic tree.

Definition. A rooted phylogenetic tree is a triplet , where

• is a rooted binary tree

• is a set of labels typically representing species, and

• is a bijection i.e., 1-1 function, mapping leaf vertices in to labels in

T (t, S, ϕ)

t

S

ϕ t S

For simplicity, we do not make an explicit distinction between leaf nodes and their labels.

We will simply say that is a phylogenetic tree on label set , omitting the
reference to .

We let

• denote the leaf set of

• denote the vertex set of

• denote the edge set of

T S
ϕ

L(T) T
V(T) T
E(T) T

In this presentation

22

Now we have a definition for phylogenetic
trees — but what about the data?

23

A

B

C

D

A

B

C

D

Let’s consider a simple example.

24

A

B

C

D

A

B

C

D

Let’s consider a simple example.

25

Definition. A character is a surjection mapping labels (species)
onto states.

c c : S → {1,2,…, k}
k

state 0 = trait is absent

state 1 = trait present

A

B

C

D
+ Black Stripe

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

c1

26

state 0 = trait is absent

state 1 = trait present

Definition. A character is a surjection mapping labels (species)
onto states.

c c : S → {1,2,…, k}
k

A

B

C

D
+ Black Stripe

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

c1

27

state 0 = trait is absent

state 1 = trait present

Class question — What are the characters implied by
these birds?

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow

Tail

c1 c2 c3 c4

28

Class question — What are the characters implied by
these birds?

In practice, we are given data (characters) and
seek a phylogenetic tree that best explains it.

29

A

B

C

D

Let’s consider a simple example, again.

30

A

B

C

D
+ Black Stripe

Let’s consider a simple example, again.

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

c1

31

A

B

C

D

+

Orange

Wings

+ Black Stripe

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

c1 c2

32

Let’s consider a simple example, again.

A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

c1 c2 c3

33

Let’s consider a simple example, again.

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow

Tail

c1 c2 c3 c4

34

Let’s consider a simple example, again.

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow

Tail

c1 c2 c3 c4

35

Definition. A phylogenetic tree is called a perfect phylogeny for a set of
characters if every character can be explained by a trait arising on exactly one
branch of .

T 𝒞

T

Now we want an algorithm to find a perfect
phylogeny for our data if one exists.

36

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow

Tail

c1 c2 c3 c4

37

Observation — There is a relationship between characters
and clades (subsets of species).

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4

38

Observation — There is a relationship between characters
and clades (subsets of species).

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is

mutated state. Write down subset of
species implied by each character:

{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and
set of all species).

3. Build tree using Hasse Diagram.

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4

39

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is

mutated state. Write down subset of
species implied by each character:

{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and
set of all species).

3. Build tree using Hasse Diagram.

Observation — There is a relationship between characters
and clades (subsets of species).

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4

40

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is

mutated state. Write down subset of
species implied by each character:

{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and
set of all species).

3. Build tree using Hasse Diagram.

Observation — There is a relationship between characters
and clades (subsets of species).

For step 3, need to:

Define a partial order on clades so that the Hasse
Diagram produces a phylogeny.

41

But first some definitions…

42

Definition. A relation on set is subset of the Cartesian product , which is the
set formed by taking exactly two elements from , in all possible ways.

X X × X
X

But first some definitions…

43

Definition. A partial order is relation on set satisfying three properties:

• and implies that (TRANSITIVITY)

• for all

• and implies

R X

⟨x, y⟩ ∈ R ⟨y, z⟩ ∈ R ⟨x, z⟩ ∈ R

⟨x, x⟩ ∈ R x ∈ X

⟨x, y⟩ ∈ R ⟨y, x⟩ ∈ R x = y

Definition. A relation on set is subset of the Cartesian product , which is the
set formed by taking exactly two elements from , in all possible ways.

X X × X
X

44

But first some definitions…

Definition. The Hasse Diagram for a set with a partial order is constructed in three
steps:

(1) create vertex for each element in ,

(2) add directed edge if and , and

(3) remove arrows implied by transitivity.

X R

X

x → y ⟨x, y⟩ ∈ R x ≠ y

45

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is

mutated state. Write down subset of
species implied by each character:

{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and set
of all species).

3. Build tree using Hasse Diagram.

Going

back

to our

example…

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4

46

{A,B,C,D}

{B}

{A, B}

{A, B, C}

{A} {C} {D}

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is

mutated state. Write down subset of
species implied by each character:

{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and set
of all species).

3. Build tree using Hasse Diagram.

Going

back

to our

example…

A = 0 1 1 1
B = 1 1 1 1
C = 0 0 1 1
D = 0 0 0 1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4

47

A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow

Tail

{A,B,C,D}

{B}

{A, B}

{A, B, C}

{A} {C} {D}

Going

back

to our

example…

Now we have an algorithm to find a perfect
phylogeny for our data if one exists.

However, perfect phylogenies unlikely to
exist in practice!

48

A perfect phylogenies will exist if characters

• evolve without homoplasy AND

• are correctly called+coded for all labels in the set ,

• no error

• no missing or ambiguous states

S

49

Now let’s define homoplasy for the case where
characters are undirected (i.e., we don’t know
which state is ancestral or mutated).

50

A
B C D

E

51

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

Definition. Given a tree and a -state character , we say that evolves without
homoplasy if the internal nodes can be labeled with states so that each substitution
produces a new state.

T k c c

A
B C D

E

52

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

Definition. Given a tree and a -state character , we say that evolves without
homoplasy if the internal nodes can be labeled with states so that each substitution
produces a new state.

T k c c

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A
B C D

E
1 1

53

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

000

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A
B C D

E
1 1

54

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

000

0 0 0

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A
B C D

E
1 1

55

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

000

0 0 0

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

At least 2 substitutions is required to explain c1, across all possible
labelings of the internal nodes… so it evolved with homoplasy!

A
B C D

E

c1 c2

56

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

A
B C D

E
1

1

57

0
00

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

A
B C D

E
1

1

1

58

0
00

0 0

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

A = 1 1
B = 0 1
C = 0 0
D = 0 0
E = 1 0

c1 c2

A
B C D

E
1

1

1

59

0
00

0 0

Remark. Given a tree and a -state character, the character evolves without
homoplasy if it can be explained with substitutions.

T k
k − 1

Only 1 substitution needed to explain c2, across all possible labelings of
the internal nodes… so it evolved WITHOUT homoplasy!

Agenda

60

Part 1: Perfect Phylogenies

Part 2: Small Parsimony Problem & Fitch’s Algorithm

Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

Moving on… we want to compute the unordered
parsimony score to determine whether an
undirected character evolves with homoplasy!

61

Definition 3 (parsimony score). Given a tree and a character , both on label set ,
the parsimony score, denoted , is the minimum # of substitutions
required to explain the states at the leaves.

T c S
length(T, c)

62

Input. The pair , where is a
an unrooted binary phylogenetic
tree and is a character, both on
label set .

(T, c) T

c
S

Output. An assignment of character
states to the internal nodes of to
minimize the # of substitutions, i.e.
the # of edges for which

T

e = (u, v)
c(u) ≠ c(v)

B

C A D

E
1 0

012

?

B

C A D

E
1 0

012

??

Small Parsimony Problem

63

1 1 2 00
A B C D E

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

64

1 1 2 00
A B C D E

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

65

1 1 2 00
A B C D E

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

66

{1,2}

1 1 2 00
A B C D E

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

67

{1,2}

1 1 2 00
A B C D E

{1}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

68

{1,2}

1 1 2 00
A B C D E

{1}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

69

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

70

{1,2}

1 1 2 00
A B C D E

{1}

{1,0}

{0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

71

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

72

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

73

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

74

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

75

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

76

{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return minus the root

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

77

Class Exercise — modify
this algorithm to return
the parsimony score?

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return minus the root

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

78

Class Exercise — modify
this algorithm to return
the parsimony score?

Add 1 to the parsimony

score every time you hit this line!

Exit at the end of step 3.

FitchAlgorithm():

1. Root , subdividing an arbitrary edge with root

2. For each :

3. Perform a post-order traversal of and for each
vertex :

a. children of

b. If :

c. Else:

4. arbitrary state in to root

5. Perform a pre-order traversal of and for each
vertex :

a. parent of

b. If :

c. Else: arbitrary state in

6. Return minus the root

T, c

T r

l ∈ L(T) A(l) ← {c(l)}

T
v ∈ V(T)∖L(T)

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T)∖L(T)∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c

79

Input. The pair , where is a
an unrooted binary phylogenetic
tree and is a character, both on
label set .

(T, c) T

c
S

Output. An assignment of character
states to the internal nodes of to
minimize the # of substitutions, i.e.
the # of edges for which

T

e = (u, v)
c(u) ≠ c(v)

B

C A D

E
1 0

012

1

B

C A D

E
1 0

012

01

Small Parsimony Problem
score = 2

80

We covered Fitch’s algorithm, in which all substitutions
have cost 1. Sankoff’s algorithm generalizes this idea by
allowing substitutions to have different costs!

ToDo: What is the time complexity of Fitch’s algorithm…

81

To prove correctness, define subproblems
which is the optimal parsimony score of rooted subtree

 given the assignment .

Show this holds for base case (leaves), make inductive
hypothesis, and then show it holds for some vertex .

Cost(v, x)

Tv c(v) = x

v

82

Agenda

83

Part 1: Perfect Phylogenies

Part 2: Small Parsimony Problem & Fitch’s Algorithm

Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

Input. A set of -state character ,
each on label set .

𝒞 k
S

Output. A tree on label set that
minimizes the total # of
substitutions required to explain .

T S

𝒞

Maximum Parsimony (aka Large Parsimony Problem)

A

B C

D
A = 0 0
B = 0 1
C = 1 0
D = 1 0

c1 c2

84

Input. A set of -state character ,
each on label set .

𝒞 k
S

Output. A tree on label set that
minimizes the total # of
substitutions required to explain .

T S

𝒞

Maximum Parsimony (aka Large Parsimony Problem)

A

B C

D
A = 0 0
B = 0 1
C = 1 0
D = 1 0

c1 c2

NP-hard (Foulds and Graham, 1982)

85

Agenda

86

Part 1: Perfect Phylogenies

Part 2: Small Parsimony Problem & Fitch’s Algorithm

Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

MP is NP-hard.

Now what?

87

Exhaustive Search:

Evaluate the parsimony score of all
trees.

MP is NP-hard.

Now what?

88

Exhaustive Search:

Evaluate the parsimony score of all
trees.

MP is NP-hard.

Now what?

But it’s challenging because
tree space has
unrooted trees on leaves!

(2n − 5)!!
n

 #trees

 4 3

 5 15

 6 105

 7 945

 8 10,395

 9 135,135

 10 2,027,025

n

89

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

MP is NP-hard.

Now what?

90

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

MP is NP-hard.

Now what?

91

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

MP is NP-hard.

Now what?

92

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

MP is NP-hard.

Now what?

But then we need methods
to…

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.

>SPR, NNI, TBR moves

93

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

MP is NP-hard.

Now what?

But then we need methods
to…

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.

>SPR, NNI, TBR moves

94

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

95

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

96

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

97

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

98

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

99

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

100

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

101

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

102

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

103

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

104

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)

L = [B, C, A, D, E]

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

105

RandomizedTaxonAddition():

1. put labels in in random order

2. star tree on first elements of

3. For each remaining element in :

a.

b. For each :

i. Add to by subdividing

 with new vertex and
creating edge

ii.

iii. If : and

c.

4. Return

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T)
̂T ← s T

e v
(v, s)

̂p ← length(̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

106

Think about — how
many calls will you make
to the length function?

Give your answer in Big Oh, where

• is the # of labels

• is the #r of characters

n
m

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

MP is NP-hard.

Now what?

But then we need methods
to…

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.

>SPR, NNI, TBR moves

107

Exhaustive Search:

Evaluate the parsimony score of all
trees.

Branch-and-Bound:

Like exhaustive search but better

Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

MP is NP-hard.

Now what?

But then we need methods
to…

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.

>SPR, NNI, TBR moves

108

Tree Bisection and

Reconnection (TBR) move

Subtree Prune and

Regraft (SPR) move

Nearest Neighbor

Interchange (NNI) move

109

Lastly, let’s take a closer look at branch-and-bound.

110

111

Branch-and-Bound Ideas:

1. Take a tree (e.g. compute a tree with

randomized taxon addition) and
compute its length .

T

L

112

Branch-and-Bound Ideas:

1. Take a tree (e.g. compute a tree with

randomized taxon addition) and
compute its length .

2. An optimal solution to maximum
parsimony tree must have length .

T

L

≤ L

113

Branch-and-Bound Ideas:

1. Take a tree (e.g. compute a tree with

randomized taxon addition) and
compute its length .

2. An optimal solution to maximum
parsimony tree must have length .

3. Now suppose you add a taxon to a
tree , The length of the resulting tree
must be .

T

L

≤ L

x
t tx

≥ length(t)

Branch-and-Bound Ideas:

1. Take a tree (e.g. compute a tree with

randomized taxon addition) and
compute its length .

2. An optimal solution to maximum
parsimony tree must have length .

3. Now suppose you add a taxon to a
tree , The length of the resulting tree
must be .

4. Therefore, you can enumerate all trees
via taxon addition and stop
enumerating from a given tree if

.

T

L

≤ L

x
t tx

≥ length(t)

t
length(t) > L

114

Stop bc

length(B3) > L

Agenda

115

Part 1: Perfect Phylogenies

Part 2: Small Parsimony Problem & Fitch’s Algorithm

Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

• Evolutionary trees are reconstructed from data (e.g., characters).

• A perfect phylogeny does not always exist for the data.

• The goal of parsimony is to find the tree that offers the simplest explanation of our data
(i.e., minimum substitutions).

• The parsimony score of a given tree can be computed in polynomial time but finding a
tree so that the score is minimized is NP-hard.

• Whether it makes sense to reconstruct a tree using maximum parsimony depends on
the model of evolution — take my undergrad (498Y) or grad class (829A) to learn more!

• You covered a basic model of evolution (substitutions only) in the textbook and
considered how to compute likelihood under this model (similar ideas apply for scoring,
hardness, and heuristics).

116

Take-Aways

