—UN With

~nylogenetic lrees

Erin Molloy

University of Maryland, College Park

Guest Lecture in CMSC 423 Bioinformatics

April 25, 2023

Who has seen a similar picture”

Who has seen a similar picture”

Evolution is not a line!

Evolution I1s a tree!

Evolutionary tree = phylogeny

Evolution I1s a tree!

Most recent ‘
common ancestor of
human & chimpanzee

Evolutionary tree = phylogeny

—volutionary trees are used in
bioinformatics analyses.

vaccine design
& strain tracking

[Qiu et al., 2019; Hodcroft et al., 2021]

microbe identification

[Nguyen et al., 2014; Amato et al., 2019;
Mevyer et al., 2019; Shah et al., 2021]

IL21R

TOX

TP53, APC:2
STRN

NRAS
ATR

CHN1, MN1,
LINGO2:1, LINGO2:2 ALK, EPHB6
MYH11, LRP1B NR3C2
FHIT SPEN:1
APC
ATP7B
PTPRD
LINGO2:3, FUS,
-LRP1B, -LINGO2:1 -FHIT, LAMIBA,
NR4A3 LINGO2:4, IL7R,
HELZ
- PIK3CG
PRKCR LINGO2:5
SPEN:2

tumor evolution

[Satas et al., 2021]

monoclonal seeding

—volutionary trees are reconstructed
from data.

Morphology Genomics

1. Geospiza magnirostris. 2. Geospiza fortis.
3. Geospiza parvula. 4. Certhidea olivasca.

Darwin’s finches

1,000 bat genomes

5,000 Insect genomes

10,000 plant genomes

%o BiL VERTEBRATE

B s CRo0NeT >60,000 vertebrate genomes

bl .
A PROJECT OF THE G10K CONSORTIUM 10

~1.5 million eukaryotic genomes
iIn next 10 years

12

"Resolving the Tree of Life Is
unquestionably among the
most complex scientific
oroblems facing biology and
oresents challenges much
greater than sequencing the
numan genome.”

From: “Assembling the Tree of Life: Harnassing Life’s
History to Benefit Science and Society,” NSF, 2002.

The human genome
oroject "ended” In
20038 with ~92%...

And then it took ~20
more years to
‘complete” final ~8%.

SPECIAL SECTION COMPLETING THE HUMAN GENOME

RESEARCH ARTICLE

HUMAN GENOMICS
The complete sequence of a human genome

Sergey Nurk't, Sergey Koren't, Arang Rhie't, Mikko Rautiainen't, Andrey V. Bzikadze?, Alla Mikheenko®,
Mitchell R. Vollger?, Nicolas Altemose®, Lev Uralsky®”, Ariel Gershman®, Sergey Aganezov®1,
Savannah J. Hoyt'®, Mark Diekhans", Glennis A. Logsdon®, Michael Alonge®, Stylianos E. Antonarakis’?,
Matthew Borchers', Gerard G. Bouffard'*, Shelise Y. Brooks'?, Gina V. Caldas'®, Nae-Chyun Chen®,
Haoyu Cheng'®", Chen-Shan Chin'®, William Chow®, Leonardo G. de Lima'3, Philip C. Dishuck*,
Richard Durbin'®?°, Tatiana Dvorkina®, lan T. Fiddes?, Giulio Formenti?*?3, Robert S. Fulton®®,
Arkarachai Fungtammasan'®, Erik Garrison'?>, Patrick G. S. Grady'?, Tina A. Graves-Lindsay?®,

Ira M. Hall?’, Nancy F. Hansen?®, Gabrielle A. Hartley'®, Marina Haukness", Kerstin Howe'®,

Michael W. Hunkapiller®®, Chirag Jain'°, Miten Jain™, Erich D. Jarvis?>?, Peter Kerpedjiev®,

Melanie Kirsche®, Mikhail Kolmogorov®2, Jonas Korlach?®, Milinn Kremitzki2®, Heng Li'®7,
Valerie V. Maduro®3, Tobias Marschall**, Ann M. McCartney’, Jennifer McDaniel*®, Danny E. Miller*-3¢,
James C. Mullikin'*22, Eugene W. Myers3’, Nathan D. Olson%, Benedict Paten, Paul Peluso?,

Pavel A. Pevzner3?, David Porubsky*, Tamara Potapova®®, Evgeny I. Rogaev®”3839, Jeffrey A. Rosenfeld“?,
Steven L. Salzberg®#!, Valerie A. Schneider*?, Fritz J. Sedlazeck®®, Kishwar Shafin™, Colin J. Shew**,
Alaina Shumate®, Ying Sims'®, Arian F. A. Smit*5, Daniela C. Soto**, Ivan Sovi¢?>¢, Jessica M. Storer*®,
Aaron Streets®>*, Beth A. Sullivan®®, Francoise Thibaud-Nissen®?, James Torrance'®, Justin Wagner°,
Brian P. Walenz', Aaron Wenger®®, Jonathan M. D. Wood"®, Chunlin Xiao*?, Stephanie M. Yan*®,

Alice C. Young'*, Samantha Zarate®, Urvashi Surti®®, Rajiv C. McCoy*°, Megan Y. Dennis**,

Ivan A. Alexandrov3”®., Jennifer L. Gerton™>°2, Rachel J. O'Neill’°, Winston Timp®4%, Justin M. Zook®,
Michael C. Schqlgg"‘g, Evan E. Eichler*3*, Karen H. Miga'>**, Adam M. Phillippy**

VWe cannot analyze these forthcoming
BIG datasets with the methods we have.

Challenge #1

1€S

Too many spec

Best methods are heuristics for NP-

hard optimization problems

. set of all

.e.
possible phylogenetic trees) grows

(.

Solution space

exponentially in number of species!

15

16

n MO LW LW LW LW LWw

D — O < O ™M A

(7,] o — O M O

(o b) Ty O W M~
» — — M A
— O

Em Al
< 0O O NN~ O O

~—

Challenge #1
Too many spec
leaves

chromosomes

Challenge #2:
Genome-scale data

Il

l

[[0 A 1D

[TINT TTTT T TIT T T T

0 0 01 00 0N 00 000 A0

A0) A)
O O A 0 1)

I

More data per species

I T T T T T

CAOLE T T v vV e AT e o e AT

[T T T T T [T

Error, missing data, etc.

CCLLET TXNPTRTRTIOMEY oo v oo TDAASOTIY TN

Modeling evolution of single gene vs.
genome (many genes)

CCOLL NIRRT T T T TSP T (T [IO

CI I O T T

QT T T T T

QL BN T CEOGTL T RTYATR [TOEARTYE o0 QT 1T [0

MY

1110 00

§
g |

17

Addressing
these
challenges
requires
interdisciplinary
research!

statistics +
computer probabilistic
science modeling

evolutionary
genomics +
data science

18

Agenda

Part 1. Perfect Phylogenies
Part 2. Small Parsimony Problem & Fitch’s Algorithm
Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

19

Acknowledgements

Computational
Phylogenetics

~ TANDY WARNOW

Material in slides based on
Computational Phylogenetics by
Prof. Tandy Warnow.

Tandy Warnow

University of llinois at
Urbana-Champaign

20

Let's begin with a formal definition of
phylogenetic tree.

Definition. A rooted phylogenetic tree T is a triplet (¢, S, ¢), where
e ¢ is a rooted binary tree

e Sis a set of labels typically representing species, and

e ¢ is a bijection i.e., 1-1 function, mapping leaf vertices in ¢ to labels in S

21

N this presentation

For simplicity, we do not make an explicit distinction between leaf nodes and their labels.

We will simply say that T is a phylogenetic tree on label set .S, omitting the
reference to ¢.

We let

o L(T) denote the leaf set of T’

o V(T) denote the vertex set of T
e FE(T) denote the edge set of T

22

Now we have a definition for phylogenetic
trees — but what about the data”/

Let's consider a simple example.

24

K &
> O

«

4D

Definition. A character c is a surjection ¢ : § — {1,2,...,k} mapping labels (species)

onto k states.

25

state 0 = trait is absent
state 1 = trait present

K ¥
> ©

«

D

Definition. A character c is a surjection ¢ : § — {1,2,...,k} mapping labels (species)

onto k states.

cl S/g C
Bla_ck
Stripe g/ﬂ A
A 0
B 1
cC= 0 state 0 = trait is absent
D 0 state 1 = trait present g/g B

&4 D

26

Class question — What are the characters implied by

these bhirds?

ci

Black
Stripe

O Qww

© O

27

state 0 = trait is absent
state 1 = trait present

K &
> O

«

4D

Class question — What are the characters implied by

these bhirds?

cl c3 c4

Black Orange Yellow

Stripe Head Tail
A= 0 1 1
B = 1 1 1
cC= 0 0 1 1
D= 0 0 0 1

28

K &
> O

«

4D

In practice, we are given data (characters) and
seek a phylogenetic tree that best explains it.

Let's consider a simple example, again.

30

K &
> O

«

4D

ci

Black
Stripe

Let's consider a simple example, again.

C
A

O Qww

© O

K &

4+ 4B

+ Black Stripe

31

ci

Black
Stripe

Let's consider a simple example, again.

O Qww

© O

a4

o O

+ Black Stripe

32

C
A

K &

B
4D

«

Let's consider a simple example, again.

cl c3
Black Orange
Stripe Head
A 0 1
B 1 1
C 0 0 1
D 0 0 0

+ Black Stripe

33

&4 D

Let's consider a simple example, again.

cl c3 c4
Black Orange Yellow
Stripe Head Tail
A 0 1 1
B 1 1 1
C 0 0 1 1
D 0 0 0 1

+
Yellow
Tail

——p

<7

+ Black Stripe

&4 D

34

Definition. A phylogenetic tree T is called a perfect phylogeny for a set € of

characters if every character can be explained by a trait arising on exactly one
branch of T.

c1 c2 c3 c4 M C
g/ﬂ > 7

Black Orgnge Orange YeII(_)w

Stripe Wings Head Tail . I_:_o g’/ﬂ A

o 1 1 1 W

Tail

O Qww

1 1 1 1
0) 1 1
0) 0] 1

35

ow we want an algorithm to find a pertect
Nylogeny for our data it one exists.

Observation — There is a relationship between characters
and clades (subsets of species).

cl c3 c4

Black Orange Yellow

Stripe Head Tail
A= 0 1 1
B = 1 1 1
cC= 0 0 1 1
D= 0 0 0 1

N ¢ G
YeITow g’jg A
Tail
—|—
S? y B
+ Black Stripe

4D

37

Observation — There is a relationship between characters
and clades (subsets of species).

ci c3 c4

Black Orange Yellow

Stripe Head Tail
A= 0 1 1
B = 1 1 1
cC= 0 0 1 1
D= 0 0] 0 1

Algorithm Sketch:

1. Assume O is ancestral state and 1 is
mutated state. Write down subset of
species implied by each character:

{ {B}, ,{A, B, C}, {A,B,C,D} }

38

Observation — There is a relationship between characters
and clades (subsets of species).

ci c3 c4

Black Orange Yellow

Stripe Head Tail
A= 0 1 1
B = 1 1 1
cC= 0 0 1 1
D= 0 0] 0 1

Algorithm Sketch:

1. Assume O is ancestral state and 1 is
mutated state. Write down subset of
species implied by each character:

{ {B}, ,{A, B, C}, {A,B,C,D} }

2. Add trivial sets (set of 1 species and
set of all species).

39

Observation — There is a relationship between characters
and clades (subsets of species).

Algorithm Sketch:
c1 c3 cd 1. Assume O is ancestral state and 1 is
mutated state. Write down subset of
Black Orange Yellow Ao : :
Stripe Head il species implied by each character:
A= 0 1 1 { {B}, , {A, B, C}, {A,B,C,D} }
B= 1 1 1 2. Add trivial sets (set of 1 species and
cC= 0 0 1 1 set of all species).
D= 0 0 0 1

3. Build tree using Hasse Diagram.

40

For step 3, need to:
Define a partial order on clades so that the Hasse
Diagram produces a phylogeny.

But first some definitions. ..

Definition. A relation on set X is subset of the Cartesian product X X X, which is the

set formed by taking exactly two elements from X, in all possible ways.

42

But first some definitions. ..

Definition. A relation on set X is subset of the Cartesian product X X X, which is the
set formed by taking exactly two elements from X, in all possible ways.

Definition. A partial order is relation R on set X satisfying three properties:

e (x,y) € Rand (y,z) € Rimplies that {(x,z) € R (TRANSITIVITY)
e (x,x) eRforallxe X

e (x,y) € Rand (y,x) € Rimpliesx =y

43

But first some definitions. ..

Definition. The Hasse Diagram for a set X with a partial order R is constructed in three
steps:

(1) create vertex for each element in X,

(2) add directed edge x — y if (x,y) € Rand x # y, and

(3) remove arrows implied by transitivity.

44

Going

pback
{o our
example. ..
Algorithm Sketch:
cl c3 G 1. Assume O is ancestral state and 1 is
Black Orange Yellow muta.tedlstatle. Write down subset of
Stripe Head Tail species implied by each character:
A 0 1 1 { {B}, ,{A, B, C}, {AB,C,D} }
B 1 1 1 2. Add trivial sets (set of 1 species and set
C 0 0 1 1 of all species).
D 0 0 0 1 3. Build tree using Hasse Diagram.

45

Going (AB,C.D}

/
pback (A, B, C}
/"
{0 our
7N
example... A B {© (D
Algorithm Sketch:
cl c3 cd 1. Assume O is ancestral state and 1 is
Black Orange Yellow muta.tedlstatle. Write down subset of
Stripe Head Tail species implied by each character:
A 0 1 1 { {B}, ,{A, B, C}, {AB,C,D} }
B 1 1 1 2. Add trivial sets (set of 1 species and set
C o o 1 1 of all species).
D 0 0 0 1 3. Build tree using Hasse Diagram.

46

Going (AB,C.D}

/!
back (A, B, C}
/!
o our \
7N
example... A B {© (D
ci c3 cd
Black Orange Yellow
Stripe Head Tail
A 0 1 1
B 1 1 1
C 0 0 1 1
D 0 0 0 1

47

Now we have an algorithm to find a pertect
ohylogeny for our data it one exists.

However, perfect phylogenies unlikely to
exist In practice!

A perfect phylogenies will exist if characters

¢ evolve without homoplasy AND

e are correctly called+coded for all labels in the set S,
® NO error
® NO MISSING Or ambiguous states

49

Now let's define homoplasy for the case where
characters are undirected (i.e., we don't know
which state is ancestral or mutated).

50

HmoOQwp
mHoOoOoHR
Coorm

00

O

O

Definition. Given a tree T and a k-state character ¢, we say that ¢ evolves without
homoplasy if the internal nodes can be labeled with states so that each substitution
produces a new state.

51

moaQwp
~ooOoHR
Coorm

vy

O

O

Definition. Given a tree T and a k-state character ¢, we say that ¢ evolves without
homoplasy if the internal nodes can be labeled with states so that each substitution
produces a new state.

MoQwyP

MoQwyP

MoQwyP

At least 2 substitutions is required to explain c1, across all possible
labelings of the internal nodes... so it evolved with homoplasy!

)
[EN

A
B
C
D
E

R OOOHK

OO0 kKRK

MoQwyP

R OOOHK

MoQwyP

R OOOHK

MmoaQwp
H OOO0OHR

Only 1 substitution needed to explain c2, across all possible labelings of
the internal nodes... so it evolved WITHOUT homoplasy!

Agenda

Part 1. Perfect Phylogenies
Part 2. Small Parsimony Problem & Fitch’s Algorithm
Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

60

Moving on... we want to compute the unordereo
parsimony score to determine whether an
undirected character evolves with homoplasy!

61

Definition 3 (parsimony score). Given a tree T and a character ¢, both on label set S,
the parsimony score, denoted length(T, c), is the minimum # of substitutions

required to explain the states at the leaves.

62

Small Parsimony Problem

= 0 e
N O o—me

Input. The pair (T, c), where T'is a
an unrooted binary phylogenetic

tree and c¢ is a character, both on
label set S.

O Ime

63

@
B
1

SEON o JEV

= > e

O Q0e—e
ome

Output. An assignment of character
states to the internal nodes of T to
minimize the # of substitutions, i.e.
the # of edges e = (u, v) for which

c(u) # c(v)

N O

o O

O m

64

FitchAlgorithm(7', ¢):

1. Root T, subdividing an arbitrary edge with root r

N O

o O

O m

65

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

N O

o O

O m

66

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(l)}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW) # @: A(v) « A(w) N A(w')
c. Else: A(v) « A(w)UAW)

{1,2}

N O

o O

O m

67

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW) # @: A(v) « A(w) N A(w')
c. Else: A(v) « A(w)UAW)

{1}

{1,2}

N O

o O

O m

68

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW) # @: A(v) « A(w) N A(w')
c. Else: A(v) « A(w)UAW)

69

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW) # @: A(v) « A(w) N A(w')
c. Else: A(v) « A(w)UAW)

{0}

70

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW) # @: A(v) « A(w) N A(w')
c. Else: A(v) « A(w)UAW)

{0}

71

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

3. Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW') # @: A(v) « A(w)N A(w’)
c. Else: A(v) « A(w)UAW)

4. c(r) < arbitrary state in A(r) to root

72

FitchAlgorithm(7', ¢):

1.
2.
3.

4.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(l)}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. fAW)NAW') # @: A(v) « A(w)N A(w’)
c. Else: A(v) « A(w)UAW)

c(r) « arbitrary state in A(r) to root

73

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

3. Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else:A(v) « A(w)UAW)

4. c(r) « arbitrary state in A(r) to root

5. Perform a pre-order traversal of T and for each
vertex v € V(TH\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)

c. Else: c(v) « arbitrary state in A(u)

{1}

{1,2}

N O

o O

O m

74

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

3. Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else:A(v) « A(w)UAW)

4. c(r) « arbitrary state in A(r) to root

5. Perform a pre-order traversal of T and for each
vertex v € V(TH\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)

c. Else: c(v) « arbitrary state in A(u)

{1,2}

N O

o O

O m

75

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

3. Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else:A(v) « A(w)UAW)

4. c(r) « arbitrary state in A(r) to root

5. Perform a pre-order traversal of T and for each
vertex v € V(TH\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)

c. Else: c(v) « arbitrary state in A(u)

N O

o O

O m

76

FitchAlgorithm(7', ¢):
1. Root T, subdividing an arbitrary edge with root r
2. Foreachl e L(T): A(l) < {c()}

3. Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v
b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else:A(v) « A(w)UAW)

4. c(r) « arbitrary state in A(r) to root

5. Perform a pre-order traversal of T and for each
vertex v € V(TH\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)

c. Else: c(v) « arbitrary state in A(u)

N O

o O

O m

77

FitchAlgorithm(7', ¢):

1.
2.
3.

5.

6.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(l)}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v

b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else: A(v) « A(w)UAW)
c(r) « arbitrary state in A(r) to root

Perform a pre-order traversal of T and for each
vertex v € V(THO\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)
c. Else: c(v) « arbitrary state in A(u)

Return ¢ minus the root

Class Exercise — modify
this algorithm to return
the parsimony score?

78

FitchAlgorithm(7', ¢):

1.
2.
3.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v

b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else: A(v) « A(w)UAW)

c(r) « arbitrary state in A(r) to root

Perform a pre-order traversal of T and for each
vertex v € V(THO\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)
c. Else: c(v) « arbitrary state in A(u)

Return ¢ minus the root

Class Exercise — modify
this algorithm to return
the parsimony score?

Add 1 to the parsimony
score every time you hit this line!

Exit at the end of step 3.

79

FitchAlgorithm(7', ¢):

1.
2.
3.

5.

6.

Root T, subdividing an arbitrary edge with root r
Foreachl € L(T): A(l) « {c(])}

Perform a post-order traversal of T and for each
vertex v € V(T)\L(T):

a. (w,w’) « children of v

b. IfAW)NAW) # @: A(v) « A(w)nN A(w')
c. Else: A(v) « A(w)UAW)
c(r) « arbitrary state in A(r) to root

Perform a pre-order traversal of T and for each
vertex v € V(THO\L(T)\{r}:

a. u < parentofv
b. If c(u) € A(v): c(v) « c(u)
c. Else: c(v) « arbitrary state in A(u)

Return ¢ minus the root

score = 2

Small Parsimony Problem

= 0 e
N O o—me

Input. The pair (T, c), where T'is a
an unrooted binary phylogenetic

tree and c¢ is a character, both on
label set S.

O Ime

80

1

1 O
= [T T
1
CADO
2 1 O

Output. An assignment of character
states to the internal nodes of T to
minimize the # of substitutions, i.e.
the # of edges e = (u, v) for which

c(u) # c(v)

VWe covered Fitch's algorithm, in which all substitutions
have cost 1. Sankoff's algorithm generalizes this idea by
allowing supbstitutions to have different costs!

ToDo: What is the time complexity of Fitch’s algorithm. ..

81

o prove correctness, define subproblems Cost(v, x)

which is the optimal parsimony score of rooted subtree
T, given the assignment c(v) = x.

Show this holds for base case (leaves), make iInductive
nypothesis, and then show it holds for some vertex v.

82

Agenda

Part 1. Perfect Phylogenies
Part 2. Small Parsimony Problem & Fitch’s Algorithm
Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

83

Maximum Parsimony (aka Large Parsimony Problem)

C1 %)
A 0 0
B 0 1
C 1 0
D 1 0

Input. A set & of k-state character ,
each on label set S.

A D

B C

Output. A tree T on label set S that
minimizes the total # of
Ssubstitutions required to explain 6.

84

NP-hard (Foulds and Graham, 1982)
Maximum Parsimony (aka Large Parsimony Problem)

c, O A D
A 0 0
B = 0 1
C 1 0
D= 1 0 B C

Output. A tree T on label set S that

Input. A set & of k-state character , minimizes the total # of
each on label set S. Ssubstitutions required to explain 6.

85

Agenda

Part 1. Perfect Phylogenies
Part 2. Small Parsimony Problem & Fitch’s Algorithm
Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

86

MP I1s NP-hard.
Now what”

MP I1s NP-hard.
Now what”

Exhaustive Search:

Evaluate the parsimony score of all
trees.

88

MP is NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

But it's challenging because
tree space has (2n — 5)!!
unrooted trees on n leaves!

#trees

3

15

105

945
10,395
135,135
10 2,027,025

© oo ~NO O~ 3

89

MP I1s NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

90

MP I1s NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

o~]
@

B E Al "A
4& D
P ——
= X/
C1.1
A
E D
B B3
STOP B C
D
STOP
A
STOP
A\
D C
B D E C

EDCD

2

MP I1s NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

Heuristic (e.g. hill climbing):
Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

92

MP is NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

Heuristic (e.g. hill climbing):
Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

But then we need methods
to...

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.
>SPR, NNI, TBR moves

93

MP is NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

Heuristic (e.g. hill climbing):
Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

But then we need methods
to...

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.
>SPR, NNI, TBR moves

94

Input characters:

A

O QW

RandomizedTaxonAddition(%&, S):

1.

L < put labels in S in random order

Input characters:

A= (1,1,1)
B =(1,1,1)
¢ = (0,0,0)
D= (0,0,1)
E = (0,1,0)

L=[B,C,A,D,E]

RandomizedTaxonAddition(%&, S):

1.

L < put labels in S in random order

Input characters:

A= (1,1,1)
B = (1,1,1)
C = (0,0,0)
D (0,0,1)
E = (0,1,0)

L =[B, C,A,D, E]

RandomizedTaxonAddition(%&, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

Input characters:

A= (1,1,1)
B = (1,1,1)
C = (0,0,0)
D (0,0,1)
E = (0,1,0)

L =[B, C,A,D, E]

RandomizedTaxonAddition(%&, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

Input characters: \<

A= (1,1,1) A

B = (1,1,1) RandomizedTaxonAddition(%&, S):

C (0,0,0) 1. L « putlabels in S in random order
D (0,0,1) 2. T « star tree on first 3 elements of L
E (0,1,0)

3. For each remaining element s in L:
L=[B,C,A,D,E] a. p < 00
b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, 5)
i. p<« length(f“, 6)
ii. fp<p:T,,<Tandp < p
c. T'«T

save

Input characters: \<
A= (1,1,1) A _ .
B = (1,1,1) / RandomizedTaxonAddition(%, S):
¢ =1(0,0,0) . 1. L < put labels in S in random order
D (0,0,1) P ,7 2. T « star tree on first 3 elements of L
E (0,1,0) s
K<C 3. For each remaining element s in L:
L =[B,C,A,D,E] A a. p <«

b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, s)
i. p< length(T,®)
ii. fp<p:T,,<Tandp < p
c. T«T

save

Input characters:
A= (1,1,1)
B = (1,1,1)
C = (0,0,0)
D = (0,0,1)
E = (0,1,0)
L=[B,C,A,D,E]

/ RandomizedTaxonAddition(&, S):

1. L « put labels in S in random order

p=>5 |
/ 2. T « star tree on first 3 elements of L
B D
X<C 3. For each remaining element s in L:
o p=3 a. p <« o0
| .
o T b. Foreach e € E(T):
\{ . 7 Add s to T by subdividing
A -
e with new vertex v and

creating edge (v, s)
i. p< length(T,®)
ii. fp<p:T,,< Tandp < p
c. T «T

save

Input characters:
A= (1,1,1)
B = (1,1,1)
C = (0,0,0)
D (0,0,1)
E = (0,1,0)
L=[B,C,A,D,E]

o
|

RandomizedTaxonAddition(%&, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

3. For each remaining element s in L:
a. p« o
b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, 5)
i. p<« length(f“, 6)
ii. fp<p:T,,<Tandp < p
c. T'«T

save

Input characters:

A (1,1,1)
B = (1,1,1)
c = (0,0,0)
D (0,0,1)
E = (0,1,0)
L =[B,C,A,D,E]

o
|

h =5 c. T«<T

RandomizedTaxonAddition(%, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

3. For each remaining element s in L:
a. p« o
b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, s)
i. p< length(T,®)
ii. fp<p:T,,<Tandp < p

save

4 Y X
D E D C
B B
C B B E
A A 103

Input characters:
A= (1,1,1)
B = (1,1,1)
C = (0,0,0)
D= (0,0,1)
E = (0,1,0)
L=[B,C,A,D,E]

o
|

RandomizedTaxonAddition(%, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

3. For each remaining element s in L:
a. p« o
b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, 5)
i. p length(T, 6)
ii. fp<p:T,,<Tandp < p
c. T<T,,
4. Return T

104

Input characters:

A (1,1,1)
B = (1,1,1)
c = (0,0,0)
D (0,0,1)
E = (0,1,0)
L =[B,C,A,D,E]

o
|

h =5 c. T«T

RandomizedTaxonAddition(%, S):

1. L « put labels in S in random order

2. T < star tree on first 3 elements of L

3. For each remaining element s in L:
a. p« o
b. For each e € E(T):
i. T < Add s to T by subdividing
e with new vertex v and
creating edge (v, s)
i. p<— length(T,®)
ii. fp<p:T,,<Tandp < p

save

4. ReturnT

v 2 Y X
D E E C D C
B D B
CiZ B B E
A A A 105

Think about — how RandomizedTaxonAddition(%, S):

many ca"s Wl" you make 1. L < put labels in S in random order
. 2. T < star tree on first 3 elements of L

to the length function?

3. For each remaining element s in L:

a p < 0
Give your answer in Big Oh, where b. For each e € E(T):
e 1 is the # of labels i. T < Add s to T by subdividing
e m is the #r of characters e with new vertex v and

creating edge (v, s)
i. p< length(T,®)
ii. fp<p:T,, < Tandp < p

c. T<T,,
4. ReturnT

MP is NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

Heuristic (e.g. hill climbing):
Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

But then we need methods
to...

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.
>SPR, NNI, TBR moves

107

MP is NP-hard.
Now what”

Exhaustive Search:
Evaluate the parsimony score of all
trees.

Branch-and-Bound:
Like exhaustive search but better

Heuristic (e.g. hill climbing):
Compute a starting tree. Apply some
operation to edit the tree. Search
from new tree if it’s score is higher.

But then we need methods
to...

1. Build a starting tree.

>randomized taxon addition

2. Edit an existing tree.
>SPR, NNI, TBR moves

108

Nearest Neighbor
Interchange (NNI) move

Subtree Prune and
Regraft (SPR) move

A cC D E

B 7 pruning E

l :

D E

>

C

regrafting

C E F G
D: ;—B
A

G

Tree Bisection and

Reconnection (TBR) move

A C D B

B bisection

reconnection

>
o
Q
T

Lastly, let's take a closer look at branch-and-bound.

110

Branch-and-Bound Ideas:

1. Take atree T (e.g. compute a tree with
randomized taxon addition) and
compute its length L.

111

Branch-and-Bound Ideas:

1. Take atree T (e.g. compute a tree with
randomized taxon addition) and
compute its length L.

2. An optimal solution to maximum
parsimony tree must have length < L.

112

Branch-and-Bound Ideas:

1. Take atree T (e.g. compute a tree with
randomized taxon addition) and
compute its length L.

2. An optimal solution to maximum
parsimony tree must have length < L.

3. Now suppose you add a taxon x to a
tree ¢, The length of the resulting tree ¢,
must be > length(?).

113

Branch-and-Bound Ideas:

1

. Take atree T (e.g. compute a tree with

randomized taxon addition) and
compute its length L.

. An optimal solution to maximum

parsimony tree must have length < L.

. Now suppose you add a taxon x to a
tree ¢, The length of the resulting tree ¢,

must be > length(?).

. Therefore, you can enumerate all trees

via taxon addition and stop
enumerating from a given tree t if
length(t) > L.

=
0

\ B ED Al "A
% c Stop bc
Ny ength(B3) > L
BE D K\\\\\\\ .
STOP < D B C

D
STOP
A

STOP
B D E C

2 /

2

Y EEE

Agenda

Part 1. Perfect Phylogenies
Part 2. Small Parsimony Problem & Fitch’s Algorithm
Part 3: Large Parsimony Problem

Part 4: Maximum Parsimony Methods

115

Take-Aways

Evolutionary trees are reconstructed from data (e.g., characters).
A perfect phylogeny does not always exist for the data.

The goal of parsimony is to find the tree that offers the simplest explanation of our data
(i.e., minimum substitutions).

The parsimony score of a given tree can be computed in polynomial time but finding a
tree so that the score is minimized is NP-hard.

Whether it makes sense to reconstruct a tree using maximum parsimony depends on
the model of evolution — take my undergrad (498Y) or grad class (829A) to learn more!

You covered a basic model of evolution (substitutions only) in the textbook and
considered how to compute likelihood under this model (similar ideas apply for scoring,
hardness, and heuristics).

116

