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Who has seen a similar picture?
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Evolution is not a line!

Who has seen a similar picture?
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Evolution is a tree!

4
Evolutionary tree = phylogeny



most recent 

common ancestor of

human & chimpanzee

Evolution is a tree!
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Evolutionary tree = phylogeny
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Evolutionary trees are used in 
bioinformatics analyses.



microbe identification
[Nguyen et al., 2014; Amato et al., 2019; 


Meyer et al., 2019; Shah et al., 2021]
tumor evolution

[Satas et al., 2021]

[Qiu et al., 2019; Hodcroft et al., 2021]

vaccine design

& strain tracking
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Evolutionary trees are reconstructed 
from data.
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Morphology Genomics

Darwin’s finches
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1,000 bat genomes

5,000 insect genomes

>60,000 vertebrate genomes

10,000 plant genomes
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~1.5 million eukaryotic genomes

in next 10 years
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A S S E M B L I N G T H E T R E E O F L I F E

H A R N E S S I N G  L I F E ’ S  H I S T O R Y  T O  B E N E F I T  S C I E N C E  A N D  S O C I E T Y

“Resolving the Tree of Life is 

unquestionably among the

most complex scientific

problems facing biology and

presents challenges much

greater than sequencing the

human genome.”

From: “Assembling the Tree of Life: Harnassing Life’s

History to Benefit Science and Society,” NSF, 2002. 
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RESEARCH ARTICLE
◥

HUMAN GENOMICS

The complete sequence of a human genome
Sergey Nurk1†, Sergey Koren1†, Arang Rhie1†, Mikko Rautiainen1†, Andrey V. Bzikadze2, Alla Mikheenko3,
Mitchell R. Vollger4, Nicolas Altemose5, Lev Uralsky6,7, Ariel Gershman8, Sergey Aganezov9‡,
Savannah J. Hoyt10, Mark Diekhans11, Glennis A. Logsdon4, Michael Alonge9, Stylianos E. Antonarakis12,
Matthew Borchers13, Gerard G. Bouffard14, Shelise Y. Brooks14, Gina V. Caldas15, Nae-Chyun Chen9,
Haoyu Cheng16,17, Chen-Shan Chin18, William Chow19, Leonardo G. de Lima13, Philip C. Dishuck4,
Richard Durbin19,20, Tatiana Dvorkina3, Ian T. Fiddes21, Giulio Formenti22,23, Robert S. Fulton24,
Arkarachai Fungtammasan18, Erik Garrison11,25, Patrick G. S. Grady10, Tina A. Graves-Lindsay26,
Ira M. Hall27, Nancy F. Hansen28, Gabrielle A. Hartley10, Marina Haukness11, Kerstin Howe19,
Michael W. Hunkapiller29, Chirag Jain1,30, Miten Jain11, Erich D. Jarvis22,23, Peter Kerpedjiev31,
Melanie Kirsche9, Mikhail Kolmogorov32, Jonas Korlach29, Milinn Kremitzki26, Heng Li16,17,
Valerie V. Maduro33, Tobias Marschall34, Ann M. McCartney1, Jennifer McDaniel35, Danny E. Miller4,36,
James C. Mullikin14,28, Eugene W. Myers37, Nathan D. Olson35, Benedict Paten11, Paul Peluso29,
Pavel A. Pevzner32, David Porubsky4, Tamara Potapova13, Evgeny I. Rogaev6,7,38,39, Jeffrey A. Rosenfeld40,
Steven L. Salzberg9,41, Valerie A. Schneider42, Fritz J. Sedlazeck43, Kishwar Shafin11, Colin J. Shew44,
Alaina Shumate41, Ying Sims19, Arian F. A. Smit45, Daniela C. Soto44, Ivan Sović29,46, Jessica M. Storer45,
Aaron Streets5,47, Beth A. Sullivan48, Françoise Thibaud-Nissen42, James Torrance19, Justin Wagner35,
Brian P.Walenz1, Aaron Wenger29, Jonathan M. D. Wood19, Chunlin Xiao42, Stephanie M. Yan49,
Alice C. Young14, Samantha Zarate9, Urvashi Surti50, Rajiv C. McCoy49, Megan Y. Dennis44,
Ivan A. Alexandrov3,7,51, Jennifer L. Gerton13,52, Rachel J. O’Neill10, Winston Timp8,41, Justin M. Zook35,
Michael C. Schatz9,49, Evan E. Eichler4,53*, Karen H. Miga11,54*, Adam M. Phillippy1*

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of
the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the
genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence
of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects
errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene
predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric
satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes,
unlocking these complex regions of the genome to variational and functional studies.

T
he current human reference genomewas
released by the Genome Reference Con-
sortium (GRC) in 2013 andmost recently
patched in 2019 (GRCh38.p13) (1). This
reference traces its origin to the publicly

funded Human Genome Project (2) and has
been continually improved over the past two
decades. Unlike the competing Celera effort
(3) and most modern sequencing projects
based on “shotgun” sequence assembly (4),

the GRC assembly was constructed from se-
quenced bacterial artificial chromosomes
(BACs) that were ordered and oriented along
the human genome by means of radiation hy-
brid, genetic linkage, and fingerprint maps.
However, limitations of BAC cloning led to
anunderrepresentation of repetitive sequences,
and the opportunistic assembly of BACs de-
rived from multiple individuals resulted in a
mosaic of haplotypes. As a result, several GRC
assembly gaps are unsolvable because of in-
compatible structural polymorphisms on their
flanks, and many other repetitive and poly-
morphic regions were left unfinished or in-
correctly assembled (5).
The GRCh38 reference assembly contains

151 mega–base pairs (Mbp) of unknown se-
quence distributed throughout the genome,
including pericentromeric and subtelomeric
regions, recent segmental duplications, ampli-
conic gene arrays, and ribosomal DNA (rDNA)
arrays, all of which are necessary for funda-
mental cellular processes (Fig. 1A). Some of the
largest reference gaps include human satellite
(HSat) repeat arrays and the short arms of all
five acrocentric chromosomes, which are repre-
sented in GRCh38 as multimegabase stretches
of unknown bases (Fig. 1, B and C). In addi-
tion to these apparent gaps, other regions of
GRCh38 are artificial or are otherwise in-
correct. For example, the centromeric alpha
satellite arrays are represented as computa-
tionally generated models of alpha satellite
monomers to serve as decoys for resequencing
analyses (6), and sequence assigned to the
short arm of chromosome 21 appears falsely
duplicated and poorly assembled (7). When
comparedwith other humangenomes,GRCh38
also shows a genome-wide deletion bias that
is indicative of incomplete assembly (8). De-
spite finishing efforts from both the Human
GenomeProject (9) andGRC (1) that improved
the quality of the reference, there was limited
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The human genome 
project “ended” in 
2003 with ~92%…


And then it took ~20 
more years to 
“complete” final ~8%.
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We cannot analyze these forthcoming 
BIG datasets with the methods we have.
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Challenge #1: 

Too many species

Best methods are heuristics for NP-
hard optimization problems


Solution space (i.e., set of all 
possible phylogenetic trees) grows 
exponentially in number of species!
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Challenge #1: 

Too many species

Best methods are heuristics for NP-
hard optimization problems


Solution space (i.e., set of all 
possible phylogenetic trees) grows 
exponentially in number of species!

# leaves          #trees

           4                  3

           5                15

           6              105

           7              945

           8         10,395

           9       135,135

         10    2,027,025
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chromosomes

Challenge #2:

Genome-scale data

More data per species


Error, missing data, etc. [Molloy & Warnow, 2017]


Modeling evolution of single gene vs. 
genome (many genes)

17
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Addressing 

these 

challenges 
requires 
interdisciplinary 
research!

computer 
science

statistics + 
probabilistic 
modeling

evolutionary 
genomics + 
data science



Agenda
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Part 1:  Perfect Phylogenies

 

Part 2:  Small Parsimony Problem & Fitch’s Algorithm

 

Part 3:  Large Parsimony Problem

 

Part 4:  Maximum Parsimony Methods



Tandy Warnow

University of Illinois at

Urbana-Champaign

Material in slides based on 
Computational Phylogenetics by 
Prof. Tandy Warnow.

Acknowledgements
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Let’s begin with a formal definition of 
phylogenetic tree.

Definition. A rooted phylogenetic tree  is a triplet , where


•   is a rooted binary tree


•   is a set of labels typically representing species, and


•   is a bijection i.e., 1-1 function, mapping leaf vertices in  to labels in 

T (t, S, ϕ)

t

S

ϕ t S



For simplicity, we do not make an explicit distinction between leaf nodes and their labels.


We will simply say that  is a phylogenetic tree on label set , omitting the 
reference to .


We let 


•   denote the leaf set of 


•   denote the vertex set of 


•   denote the edge set of 

T S
ϕ

L(T ) T
V(T ) T
E(T ) T

In this presentation
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Now we have a definition for phylogenetic 
trees — but what about the data?
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A

B

C

D

A

B

C

D

Let’s consider a simple example.
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A

B

C

D

A

B

C

D

Let’s consider a simple example.
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Definition. A character  is a surjection  mapping labels (species) 
onto  states.

c c : S → {1,2,…, k}
k

state 0 = trait is absent

state 1 = trait present



A

B

C

D
+ Black Stripe

A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

c1
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state 0 = trait is absent

state 1 = trait present

Definition. A character  is a surjection  mapping labels (species) 
onto  states.

c c : S → {1,2,…, k}
k



A

B

C

D
+ Black Stripe

A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

c1
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state 0 = trait is absent

state 1 = trait present

Class question — What are the characters implied by 
these birds?



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow


Tail

c1 c2 c3 c4
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Class question — What are the characters implied by 
these birds?



In practice, we are given data (characters) and 
seek a phylogenetic tree that best explains it.
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A

B

C

D

Let’s consider a simple example, again.
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A

B

C

D
+ Black Stripe

Let’s consider a simple example, again.

A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

c1
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A

B

C

D

+

Orange

Wings

+ Black Stripe

A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

c1 c2
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Let’s consider a simple example, again.



A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

c1 c2 c3
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Let’s consider a simple example, again.



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow


Tail

c1 c2 c3 c4
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Let’s consider a simple example, again.



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow


Tail

c1 c2 c3 c4
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Definition. A phylogenetic tree  is called a perfect phylogeny for a set  of 
characters if every character can be explained by a trait arising on exactly one 
branch of .

T 𝒞

T



Now we want an algorithm to find a perfect 
phylogeny for our data if one exists.
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A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow


Tail

c1 c2 c3 c4
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Observation — There is a relationship between characters 
and clades (subsets of species).



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
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Observation — There is a relationship between characters 
and clades (subsets of species).

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is 

mutated state. Write down subset of 
species implied by each character: 


{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }


2. Add trivial sets (set of 1 species and 
set of all species).


3. Build tree using Hasse Diagram.



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
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Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is 

mutated state. Write down subset of 
species implied by each character: 


{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }


2. Add trivial sets (set of 1 species and 
set of all species).


3. Build tree using Hasse Diagram.

Observation — There is a relationship between characters 
and clades (subsets of species).



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
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Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is 

mutated state. Write down subset of 
species implied by each character: 


{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }


2. Add trivial sets (set of 1 species and 
set of all species).


3. Build tree using Hasse Diagram.

Observation — There is a relationship between characters 
and clades (subsets of species).



For step 3, need to: 

Define a partial order on clades so that the Hasse 
Diagram produces a phylogeny.
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But first some definitions…
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Definition. A relation on set  is subset of the Cartesian product , which is the 
set formed by taking exactly two elements from , in all possible ways.

X X × X
X



But first some definitions…
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Definition. A partial order is relation  on set  satisfying three properties:


•   and  implies that           (TRANSITIVITY) 


•   for all  


•   and  implies 

R X

⟨x, y⟩ ∈ R ⟨y, z⟩ ∈ R ⟨x, z⟩ ∈ R

⟨x, x⟩ ∈ R x ∈ X

⟨x, y⟩ ∈ R ⟨y, x⟩ ∈ R x = y

Definition. A relation on set  is subset of the Cartesian product , which is the 
set formed by taking exactly two elements from , in all possible ways.

X X × X
X
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But first some definitions…

Definition. The Hasse Diagram for a set  with a partial order  is constructed in three 
steps: 


(1) create vertex for each element in , 


(2) add directed edge  if  and , and


(3) remove arrows implied by transitivity. 

X R

X

x → y ⟨x, y⟩ ∈ R x ≠ y
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A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is 

mutated state. Write down subset of 
species implied by each character: 


{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }


2. Add trivial sets (set of 1 species and set 
of all species).


3. Build tree using Hasse Diagram.

Going 

back 

to our 

example…



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
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{A,B,C,D}

{B}

{A, B}

{A, B, C}

{A} {C} {D}

Algorithm Sketch:

1. Assume 0 is ancestral state and 1 is 

mutated state. Write down subset of 
species implied by each character: 


{ {B}, {A, B}, {A, B, C}, {A,B,C,D} }


2. Add trivial sets (set of 1 species and set 
of all species).


3. Build tree using Hasse Diagram.

Going 

back 

to our 

example…



A =  0    1    1    1
B =  1    1    1    1
C =  0    0    1    1
D =  0    0    0    1

Black

Stripe

Orange

Wings

Orange

Head

Yellow

Tail

c1 c2 c3 c4
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A

B

C

D

+

Orange

Head

+

Orange

Wings

+ Black Stripe

+

Yellow


Tail

{A,B,C,D}

{B}

{A, B}

{A, B, C}

{A} {C} {D}

Going 

back 

to our 

example…



Now we have an algorithm to find a perfect 
phylogeny for our data if one exists. 


However, perfect phylogenies unlikely to 
exist in practice!
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A perfect phylogenies will exist if characters

 

 


• evolve without homoplasy AND

• are correctly called+coded for all labels in the set , 


• no error

• no missing or ambiguous states

S
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Now let’s define homoplasy for the case where 
characters are undirected (i.e., we don’t know 
which state is ancestral or mutated).

50



A
B C D

E

51

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

Definition. Given a tree  and a -state character , we say that  evolves without 
homoplasy if the internal nodes can be labeled with states so that each substitution 
produces a new state.

T k c c



A
B C D

E

52

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

Definition. Given a tree  and a -state character , we say that  evolves without 
homoplasy if the internal nodes can be labeled with states so that each substitution 
produces a new state.

T k c c

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A
B C D

E
1 1

53

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

000

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A
B C D

E
1 1

54

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

000

0 0 0

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A
B C D

E
1 1

55

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

000

0 0 0

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1

At least 2 substitutions is required to explain c1, across all possible 
labelings of the internal nodes… so it evolved with homoplasy!



A
B C D

E

c1 c2

56

A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

A
B C D

E
1

1

57

0
00

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

A
B C D

E
1

1

1
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0
00

0 0

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1



A =  1    1 
B =  0    1
C =  0    0
D =  0    0
E =  1    0

c1 c2

A
B C D

E
1

1

1

59

0
00

0 0

Remark. Given a tree  and a -state character, the character evolves without 
homoplasy if it can be explained with  substitutions.

T k
k − 1

Only 1 substitution needed to explain c2, across all possible labelings of 
the internal nodes… so it evolved WITHOUT homoplasy!



Agenda
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Part 1:  Perfect Phylogenies

 

Part 2:  Small Parsimony Problem & Fitch’s Algorithm

 

Part 3:  Large Parsimony Problem

 

Part 4:  Maximum Parsimony Methods



Moving on… we want to compute the unordered 
parsimony score to determine whether an 
undirected character evolves with homoplasy!
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Definition 3 (parsimony score). Given a tree  and a character , both on label set , 
the parsimony score, denoted , is the minimum # of substitutions 
required to explain the states at the leaves.

T c S
length(T, c)
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Input. The pair , where  is a 
an unrooted binary phylogenetic 
tree and  is a character, both on 
label set .

(T, c) T

c
S

Output. An assignment of character 
states to the internal nodes of  to 
minimize the # of substitutions, i.e. 
the # of edges  for which 

T

e = (u, v)
c(u) ≠ c(v)

B

C A D

E
1 0

012

?

B

C A D

E
1 0

012

??

Small Parsimony Problem
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1 1 2 00
A B C D E

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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1 1 2 00
A B C D E

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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1 1 2 00
A B C D E

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{1,0}

{0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return 

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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{1,2}

1 1 2 00
A B C D E

{1}

{0}

{1,0}

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return  minus the root

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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Class Exercise — modify 
this algorithm to return 
the parsimony score?

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return  minus the root

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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Class Exercise — modify 
this algorithm to return 
the parsimony score?

Add 1 to the parsimony 

score every time you hit this line!

Exit at the end of step 3.

FitchAlgorithm( ): 

1. Root , subdividing an arbitrary edge with root 


2. For each : 


3. Perform a post-order traversal of  and for each 
vertex :


a. children of 


b.  If : 


c.  Else: 


4.  arbitrary state in  to root


5. Perform a pre-order traversal of  and for each 
vertex :


a.  parent of 


b. If : 


c. Else: arbitrary state in 


6. Return  minus the root

T, c

T r

l ∈ L(T ) A(l) ← {c(l)}

T
v ∈ V(T )∖L(T )

(w, w′￼) ← v

A(w) ∩ A(w′￼) ≠ ∅ A(v) ← A(w) ∩ A(w′￼)

A(v) ← A(w) ∪ A(w′￼)

c(r) ← A(r)

T
v ∈ V(T )∖L(T )∖{r}

u ← v

c(u) ∈ A(v) c(v) ← c(u)

c(v) ← A(u)

c
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Input. The pair , where  is a 
an unrooted binary phylogenetic 
tree and  is a character, both on 
label set .

(T, c) T

c
S

Output. An assignment of character 
states to the internal nodes of  to 
minimize the # of substitutions, i.e. 
the # of edges  for which 

T

e = (u, v)
c(u) ≠ c(v)

B

C A D

E
1 0

012

1

B

C A D

E
1 0

012

01

Small Parsimony Problem
score = 2
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We covered Fitch’s algorithm, in which all substitutions 
have cost 1. Sankoff’s algorithm generalizes this idea by 
allowing substitutions to have different costs!


ToDo: What is the time complexity of Fitch’s algorithm… 

81



To prove correctness, define subproblems  
which is the optimal parsimony score of rooted subtree 

 given the assignment . 


Show this holds for base case (leaves), make inductive 
hypothesis, and then show it holds for some vertex .

Cost(v, x)

Tv c(v) = x

v
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Agenda

83

Part 1:  Perfect Phylogenies

 

Part 2:  Small Parsimony Problem & Fitch’s Algorithm

 

Part 3:  Large Parsimony Problem

 

Part 4:  Maximum Parsimony Methods



Input. A set  of -state character , 
each on label set .

𝒞 k
S

Output. A tree  on label set  that 
minimizes the total # of 
substitutions required to explain .

T S

𝒞

Maximum Parsimony (aka Large Parsimony Problem)

A

B C

D
A =  0    0 
B =  0    1
C =  1    0
D =  1    0

c1 c2
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Input. A set  of -state character , 
each on label set .

𝒞 k
S

Output. A tree  on label set  that 
minimizes the total # of 
substitutions required to explain .

T S

𝒞

Maximum Parsimony (aka Large Parsimony Problem)

A

B C

D
A =  0    0 
B =  0    1
C =  1    0
D =  1    0

c1 c2

NP-hard (Foulds and Graham, 1982)
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Agenda

86

Part 1:  Perfect Phylogenies

 

Part 2:  Small Parsimony Problem & Fitch’s Algorithm

 

Part 3:  Large Parsimony Problem

 

Part 4:  Maximum Parsimony Methods



MP is NP-hard. 

Now what?
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

MP is NP-hard. 

Now what?
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

MP is NP-hard. 

Now what?

But it’s challenging because 
tree space has  
unrooted trees on  leaves!

(2n − 5)!!
n

               #trees

    4                  3

    5                15

    6              105

    7              945

    8         10,395

    9       135,135

   10   2,027,025

n
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better

MP is NP-hard. 

Now what?
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better

MP is NP-hard. 

Now what?
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better


Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some 
operation to edit the tree. Search 
from new tree if it’s score is higher.

MP is NP-hard. 

Now what?
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better


Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some 
operation to edit the tree. Search 
from new tree if it’s score is higher.

MP is NP-hard. 

Now what?

But then we need methods 
to… 

1. Build a starting tree.


>randomized taxon addition


2. Edit an existing tree.

>SPR, NNI, TBR moves
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Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better


Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some 
operation to edit the tree. Search 
from new tree if it’s score is higher.

MP is NP-hard. 

Now what?

But then we need methods 
to… 

1. Build a starting tree.


>randomized taxon addition


2. Edit an existing tree.

>SPR, NNI, TBR moves
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RandomizedTaxonAddition( ): 


1.  put labels in  in random order

2.  star tree on first  elements of 


3. For each remaining element  in :

a. 


b. For each :

i. Add  to  by subdividing 

 with new vertex  and 
creating edge 


ii. 


iii. If :  and 


c. 


4. Return 

𝒞, S

L ← S
T ← 3 L

s L

p ← ∞

e ∈ E(T )
̂T ← s T

e v
(v, s)

̂p ← length( ̂T, 𝒞)
̂p < p Tsave ← ̂T p ← ̂p

T ← Tsave

T

̂p = 5

̂p = 3

̂p = 5

̂p = 5 ̂p = 6 ̂p = 4 ̂p = 4 ̂p = 5

Input characters:

A = (1,1,1) 
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Think about — how 
many calls will you make 
to the length function?

Give your answer in Big Oh, where

•  is the # of labels

•  is the #r of characters

n
m



Exhaustive Search:

Evaluate the parsimony score of all 
trees.

 

Branch-and-Bound:

Like exhaustive search but better


Heuristic (e.g. hill climbing):

Compute a starting tree. Apply some 
operation to edit the tree. Search 
from new tree if it’s score is higher.

MP is NP-hard. 

Now what?

But then we need methods 
to… 

1. Build a starting tree.


>randomized taxon addition


2. Edit an existing tree.

>SPR, NNI, TBR moves
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Tree Bisection and

Reconnection (TBR) move

Subtree Prune and

Regraft (SPR) move

Nearest Neighbor

Interchange (NNI) move
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Lastly, let’s take a closer look at branch-and-bound.
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Branch-and-Bound Ideas:

1. Take a tree  (e.g. compute a tree with 

randomized taxon addition) and 
compute its length .

T

L
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Branch-and-Bound Ideas:

1. Take a tree  (e.g. compute a tree with 

randomized taxon addition) and 
compute its length .


2. An optimal solution to maximum 
parsimony tree must have length .


3. Now suppose you add a taxon  to a 
tree , The length of the resulting tree  
must be . 

T

L

≤ L

x
t tx

≥ length(t)



Branch-and-Bound Ideas:

1. Take a tree  (e.g. compute a tree with 

randomized taxon addition) and 
compute its length .


2. An optimal solution to maximum 
parsimony tree must have length .


3. Now suppose you add a taxon  to a 
tree , The length of the resulting tree  
must be . 


4. Therefore, you can enumerate all trees 
via taxon addition and stop 
enumerating from a given tree  if 

.

T

L

≤ L

x
t tx

≥ length(t)

t
length(t) > L
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Stop bc

length(B3) > L



Agenda
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Part 1:  Perfect Phylogenies

 

Part 2:  Small Parsimony Problem & Fitch’s Algorithm

 

Part 3:  Large Parsimony Problem

 

Part 4:  Maximum Parsimony Methods



• Evolutionary trees are reconstructed from data (e.g., characters).


• A perfect phylogeny does not always exist for the data.


• The goal of parsimony is to find the tree that offers the simplest explanation of our data 
(i.e., minimum substitutions).


• The parsimony score of a given tree can be computed in polynomial time but finding a 
tree so that the score is minimized is NP-hard.


• Whether it makes sense to reconstruct a tree using maximum parsimony depends on 
the model of evolution — take my undergrad (498Y) or grad class (829A) to learn more!


• You covered a basic model of evolution (substitutions only) in the textbook and 
considered how to compute likelihood under this model (similar ideas apply for scoring, 
hardness, and heuristics).
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Take-Aways


