
Module 2: Chemical Kinetics 

1.0 Objectives, Scope, Required Reading & 
Assignment Schedule 

Objectives 

 
By the end of this module, students should be able to: 

 
• Identify variables that influence the rate at which chemical reactions proceed 
• Compose a rate expression for a given reaction 
• Define simple and complex reactions 
• Understand the Arrhenius Rate Expression 
• Explain the difference between 1st, 2nd, and 3rd order reactions 
• Define chain reactions 
• Understand chain branching explosions 
• Understand the theory of homogeneous ignition of gases 
• Understand the Frank-Kamenetski analysis and how it can be utilized for 

understanding a materials propensity to self-heat and spontaneously ignite 
 
Scope 

• Analysis of chemical kinetics and reaction rates 
• Analysis of ignition pertaining to gases 
• Analysis of self-heating and spontaneous ignition 

 
Reading Assignments 

• Turns: Chapter 4 
• Drysdale: Chapter 6.1, Chapter 8.1 

 

Assignment Schedule 

Three problems worth 10 points total are to be completed and submitted online. There is also 
an extra credit problem available (4 points). See the last page of this module for more details. 
 
There are exercises within the module that should be attempted by the student, these will not 
count toward your grade.  The discussion question in 6.1 (Self-heating) of the module will 
count towards your class participation grade. 
 

2.0 Background 

 
In Module 1, we learned about the chemical thermodynamics that govern combustion.  
Thermodynamics determines equilibrium in a system and, therefore, establishes the direction 
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that the system wants to go.  For example, as we saw, thermodynamics determines adiabatic 
flame temperature, a limiting temperature that is virtually never achieved in practice.  
Thermodynamics is like a signpost that points the way to the destination.  However, 
thermodynamics does not tell us how quickly we will get to the destination, for that we need 
chemical kinetics.  A good example of this is the occurrence of a natural gas leak inside a 
building.  We all know that equilibrium dictates that the methane (or higher hydrocarbons for 
that matter) will combine with the oxygen in the air in a highly exothermic reaction to form 
carbon dioxide and water.  However, we also know that this does not occur at room 
temperature unless we introduce an ignition source such as a spark.  In this case, the spark 
serves to accelerate the chemical reactions that are necessary to convert CH4 to CO2 and 
H2O so that the equilibrium state can be achieved.  Thus, chemical kinetics is like the speed 
limit sign along our thermodynamic route.  Thermodynamics points the direction to 
equilibrium but chemical kinetics determines how quickly we get there.  As we will see later in 
the course, most often it is the chemical kinetics that determine the nature of a fire including 
its heat release rate and the products of combustion it produces, including smoke and toxic 
gases.  So, before we can discuss in detail the nature of premixed and diffusion flames we 
must first understand the role of chemical kinetics in combustion. 

 

Figure M2-1   

 
 

3.0 Chemical Reactions and their Rates 

Chemical Thermodynamics tells us what reaction will occur and what the equilibrium 
products of the reaction(s) will be but, since it deals in state functions, it cannot tell us how 
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quickly equilibrium is approached.  The rate of approach to equilibrium is governed by 
chemical kinetics. 

Chemical Kinetics 

All chemical reactions take place at a finite well defined rate which can depend on 
• species concentrations 
• temperature 
• pressure 
• presence of catalyst or inhibitor 
• radiative effects 

 
One step chemical reaction is represented by 
 

 i  i i i
i i

M M′ ″γ → γ∑ ∑
 

Where and are stoichiometric coefficients (which may be zero) i
′γ i

″γ
 
e.g. 
   

2 2 22H O 2H O+ →  

1 2M H= , , 2 2M O=  3 2M H O=

1 2,′γ =  2 1,′γ =  3 0′γ =  

1 0,″γ =  2 0,″γ =  3 0″γ =  
    

Or 
 

H H H+ +  →  2H H+

1M H=   2 2M H=  

1 3′γ =   2 0′γ =  

1 1″γ =   2 1″γ =  
 

In general the rate of a reaction can be written from the “law of mass action” as 
 

i

i j
j

RR k M
γ ′

⎡ ⎤= ⎣ ⎦∏  

where [ ] n
v

=  = concentration of a species, and k is called the “rate constant” for the 

reaction. 
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That is, the rate of disappearance of a species in a reaction is proportional to the 
concentration of the reactants raised to their stoichiometric coefficients so 

      note the 2 because 2 moles of H2 disappear for every 1 mole of 
O2  

[ ] [ ] [
2

22
H 2

d H
RR 2k H O

dt
−

= = ]2  

 
or 
 

[ ] [ ] [ ]
2

22
O 2

d O
RR k H O

dt
−

= = 2 . 

 
Clearly H2 must disappear at twice the rate of O2. 
 
Similarly 

[ ] [ ]3
H

d H
RR 2k H

dt
−

= =  

 
Note: the reaction can be simple or complex. 
  
For a “simple” (or “elementary”) reaction: reaction occurs on a molecular level as written. 
e.g. 
 

H H H+ +  . → 2H H+
 

In this case, the simple reaction implies that three atoms of hydrogen collide simultaneously 
and react to form one molecule of H2 and one hydrogen atom. 
 
For “complex” reaction: 
The reaction equation only defines overall process which may consist of a series of “simple” 
or “elementary” reactions 
e.g. 
 
  2 2N O 2NO+ →
 
This reaction does NOT occur by a molecule of oxygen colliding with a molecule of nitrogen, 
rather it occurs by a series of elementary reactions: 
 

2O h 2O+ γ →  

2O N NO N+ → +  

2N O NO O+ → +  

2 2O O N N O+ + → + 2  

2 2O O O 2O+ + →  
 

But, we can write an overall reaction rate for the process of oxygen and nitrogen combining 
to form NO, i.e. 
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[ ] [ ][2

2 2

d O
k O N

dt
− = ]  

sometimes called a “global” rate. 

3.2 Arrhenius Rate Expression 

For a “simple” reaction such as A B C D+ → +  
 
e.g.  
 

2O N NO N+ → +  
 
 

[ ] [ ][ ] [ ]d A d C
RR k A B

dt dt
−

= = =  

 
 
This suggests that every collision of A B+ leads to products C and D.  Experimentally this is 
found not to be true. 
 
Arrhenius postulated that only collisions with sufficiently high energy would produce a 
reaction, so Arrhenius said 
 

E
RT

ABRR Z e−=  
 

where 
 

ABZ =  collision frequency 
 
and 
 

E
RTe− =  Boltzman factor 

 
i.e. RR fraction of collision with energy greater the E. =
So E is some potential energy barrier that must be overcome before the reaction can 
proceed to products.  This is illustrated in the graph below.  The reactants A and B begin at 
some initial energy level.  As they collide, if they have sufficient energy to overcome the 
energy barrier, EA,f, then they will react to products C and D and produce energy equal to 
ΔHRXN, i.e. 

EA b Energy  A+B  E   A f 

RXNH−Δ  C+D       5 

Reaction Coordinate
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The collision frequency, , comes from the kinetic theory of gases (i.e. the theory of 
molecular collision dynamics) and is given by: 

ABZ

 

ABZ =[ ][ ]
1/ 2

2
AB

8 kTA B ⎡ ⎤π
σ ⎢ ⎥μ⎣ ⎦

 

 
where k = Boltzman constant, 
   

σAB = collision cross section, and 

μ  = reduced mass = A B

A B

m m
m m+

 

 
so  
 

[ ][ ]AB ABZ Z A B′=  
 

then 
 

[ ][ ]E
RT

ABRR Z e A B−′= = k[A][B] 
 

by comparison with law of mass action, the rate constant k is given by 
 

E E1/ 2RT RT
AB ABk Z e Z T e− −′ ′′= =  

 
Thus, k=k(T) normally has a weak T dependence and so is frequently absorbed into 

especially for narrow T ranges. 

1/ 2T
ABZ′′

 
However, this result for k still does not quite agree with experiment, since not every collision 
is of correct orientation so we introduce a steric factor, P, then 
 

E1/ 2 RT
ABk Z T e P−′′=  

 
or the rate constant is given by 
 

E
RTk Ae−=  where the A factor is given by 1/ 2

ABA Z T P′′=  
 
From this equation for the rate constant then a plot of ln k vs. 1

T  should give a straight line 

with slope = E
R

−  
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     E
 
 
 
 
 
 
 
 
 
 
This is called an “Arrhenius Plot”. 
 
For example, for the reaction: 
 
  2D O D OD+ → +

an Arrhenius plot of experimental data leads to the result 
E 4480 R
R

= ° . 

 
In some cases, i.e. low activation energy radical reactions, A has stronger T dependence 
then predicted by the theory, so we allow for an explicit dependence on temperature in the 
“pre-exponential” factor such that: 
 

 k = ATn 
E

RTe−
  

 
   note the explicit T dependence in the equation for k. 
 
Using this form of the rate constant, Dryer et al predicted 
 

2CO OH CO H+ → + reactions 
 
strong temperature dependence 
 

7 1.3 390 / Tk 1.51x10 T e+=  
 

so most researchers adopt  
 

En RTk AT e−=  
 

so called “modified Arrhenius” form of the rate constant with 
 

2 n 2≥ ≥ −  

T
1  

ln k slope = R
−  
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Exercise 2.1:   
Given the following data for the reaction CO + O -> CO2 + O, make an Arrhenius plot and 
determine the activation energy of the reaction. 
 
 T (K)  k (cm3/mole-sec) 
 1605   7.81ee6 
 1680   1.55ee7 
 1755   2.82ee7 
 1830   4.85ee7 
 
 
 

3.3 Radical Recombination  

A radical is a highly reactive species, usually a molecular fragment that is important to the 
propagation of combustion reactions.  Some important radicals in combustion include H, O, 
OH, CH, CH2, etc.  Since these radicals are often very energetic, when they recombine to 
form a stable molecule, they frequently need another atom or molecule to collide with them to 
remove sufficient excess energy to form a stable product.  This additional atom or molecule 
is called a “third body” and is usually designated by M.  An example of a radical 
recombination reaction is: 
 

2H H M H M+ + → +  
 

where M can be any other atom or molecule.  These reactions normally have a weak 
negative temperature dependence i.e. 
 

2O O M O M+ + → +  
90013 Tk 1.9x10 e+=  

 
Note the very weak T dependence as indicated by the very small activation energy. 
 

3.4 Chemical Reactions of Various Orders 

Chemical reactions can have different reaction “orders” depending upon the number of 
reactants.  The reaction order is taken as the sum of the exponents of the reactant 
concentrations in the reaction rate expression.  For example, the reaction  
 

CO + O2 -> CO2 + O 
 
has a reaction rate given by 
 

RR = k[CO]1[O2]1 

 
The sum of the exponents of the concentrations is 1+1=2, so this is a second order reaction.  
In this section we will examine 1st, 2nd and 3rd order reactions is some detail. 
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First order reaction 

⎯⎯→tk
2A 2A  

 
[ ] [ ] [ ]

= = − 2
f 2

d A d A
2k A 2

dt dt
 

 
we can solve this differential equation using separation of variables to get: 

 
[ ]

[ ][ ]

[ ]
=∫ ∫

2

2 o

A t2
fA o

2

d A
k d

A
t  

 
which upon integration gives 
 

[ ]
[ ]

= −2
f

2 o

A
ln k t

A
  

 
or 
 

[ ] [ ] −= fk t
2 2 o

A A e  
 

 
so for a 1st order reaction, the concentration of the reactant decreases exponentially with 
time. 
 

Pseudo first order reaction 

A pseudo first order reaction is a reaction where one of the reactants is present in large 
excess compared to the other reactant such that its concentration does not change 
significantly with time.  In this case, the concentration of the excess reactant can be assumed 
to be constant and is absorbed into the rate constant k to give a pseudo first order rate 
constant k’=k[C].  For example: 
 

+ ⎯⎯→fkA C D  where [ ] [ ]>>C A  
 
then [ ]Δ ≈C O , and so 
 

[ ] [ ] [ ][ ]= − = − f

d A d D
k A C

dt dt
 [ ]′= −k A where [ ]′ =k k C  

 
then  
 

[ ] [ ] ′−= k t
o

A A e  
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Second order reactions 

+ → +A B C D 
 

[ ] [ ] [ ] [ ][ ]− −
= = =

d A d B d C
k A B

dt dt dt
 

 
if we take  
 

[ ] [ ] [ ]= −
o

A A x  

[ ] [ ] [ ]= −
o

B B x  
 
where [ ]x is concentration of A or B consumed and products produced, then 
 

[ ]d x
dt

= fk [ ] [ ]( ) [ ] [ ]( )− −
o o

A x B a  

 
gives  
 

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]( )⎛ ⎞−

= + −⎜ ⎟⎜ ⎟−⎝ ⎠

o
f o o

o

x B
x ln k B A t

x A
[ ]

[ ]
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

o

o

B
ln A  

 
Third order reactions 

Virtually all third order reactions that we will be concerned about involve a third body M.  
Since M can be any atom or molecule in the vicinity of the reaction, its concentration is 
approximately constant if the pressure is constant.  So, for a third order reaction such as: 
 

+ + → +2A A M A M 
 

The rate is given by 
 

[ ] [ ] [ ] [ ]−= =
22 1

2

d A d A
k A M

dt dt
 

 
But, if [ ]M is constant then this reaction becomes 2nd order with a rate constant k’=k[M]. 
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3.5 Consecutive Reactions 

Using different combinations of 1st, 2nd, and/or 3rd order reactions, we can construct more 
complex reaction schemes from a series of simple reactions.  These reaction schemes 
generally involve either consecutive reactions or competitive reactions or combinations of 
both.  We can use our knowledge of the individual reactions to obtain rate laws for the overall 
reaction scheme. 
 
For consecutive reactions take the example of: 
 

+ ⎯⎯→ ⎯⎯→ +1 2K KA B AB C D  
 

from first reaction 
 

[ ] [ ][ ]= 1

d AB
k A B

dt
 

 
from second reaction 

 

[ ] [ ]= − 2

d AB
k AB

dt
 

 
so 
  

[ ] [ ][ ] [ ]
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

1 2

net

d AB
k A B k AB

dt
 

       
        
       
 

   [ ] [ ]C , D  
 
 
[ ]                       [ ] [ ]A , B  
 

[ ]AB   
 
  Time 
 
These figures show qualitatively the concentrations of the various species in the consecutive 
reaction scheme given above.  Of particular note is the behavior of the intermediate, AB, 
which initially rises rapidly until a significant amount of reactants A and B are consumed and 
then decreases as the reaction of AB to form C+D overtakes the formation of AB. 
 
 

11 



Module 2: Chemical Kinetics 

Example: 
Determine expression for [ ]B in the consecutive reaction 
 

⎯⎯→ ⎯⎯→ +1 2k kA B C D  
 
Solution: 
 

[ ] [ ]= − 1

d A
k A

dt
 

 
which upon integration gives 
 

[ ] [ ] −= 1k t
o

A A e  
 
next 
 

[ ] [ ]= 2

d C
k B

dt
= 

[ ]d D
dt

 

 
and 
 

[ ] [ ] [ ]= −1 2

d B
k A k B

dt
 

 
or 
 

[ ] [ ] [ ]−= −1k t
1 2o

d B
k A e k B

dt
 

 
which integrates to  
 

[ ] [ ] ( )− −= −
−

1 2k kt t1
o

2 1

kB A e e
k k

 

 
since [ ] [ ]C D= , [ ]C  is obtained from 
 
[ ] [ ] [ ] [ ]+ + =

o
A B 2 C A  

 

3.6 Competitive Reactions 

In a competitive reaction scheme, the same reaction can lead to two different products or a 
given reactant can react with two different reactants to produce two different products.  We 
can determine the rate law for the following competitive reaction scheme by analyzing the 
contribution from each of the competing reactions. 
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For 
  

+ ⎯⎯→1kA B AB  
+ ⎯⎯→ +2kA B E F  

 
From the first reaction we get 
 

[ ] [ ][ ]= − 1

d A
k A B

dt
 

 
Second reaction gives us  
 

[ ] [ ][ ]= − 2

d A
k A B

dt
 

 
By combining these two we get a net rate for the loss of reactant A: 
 

[ ] ( )[ ][ ]
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

1 2

net

d A
k k A B

dt
 

 
Note: this gives an apparent rate constant for the disappearance of +A B by kf = ; 

however, since the rates may have very different and dependence this result can not 
readily be extrapolated to other temperatures. 

( )+1 2k k

AE T

 

3.7 Opposing Reactions 

All reactions can proceed in both the forward and reverse directions, although one direction 
may have a much faster rate than the reverse reaction.  The reverse reaction is sometimes 
called the opposing reaction.  Again we can apply our knowledge of elementary reactions to 
this opposing reaction scheme.  For the reactions: 
 

←

+ +→
fk

A B C D  

        kb 

 
In this reaction scheme, A is removed by the reaction of A+B, but A is formed by the reverse 
reaction of C+D, so from the forward reaction 
 

[ ] [ ][ ]−
= f

d A
k A B

dt
 

 
and from the reverse (or opposing reaction) 
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[ ] [ ][ ]−
= − b

d A
k C D

dt
 

 
So the net removal of A is given by: 
 

[ ] [ ][ ] [ ][ ]− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
f b

net

d A
k A B k C D

dt
 

 
note at equilibrium the forward and reverse reaction must be equal and the net rate of 
disappearance of A must be zero.  That is, 
 

[ ]⎛ ⎞
= =⎜ ⎟

⎝ ⎠
f b

net

d A
RR RR or 0

dt
 

 
so 
 

[ ][ ]
[ ][ ]

= =f
eq

b

C Dk K
k A B

 

 
In other words, the equilibrium constant (which is a thermodynamic property of the system) is 
equal to the ratio of the forward and reverse rate constants for a given reaction.  Note that in 
general is much better known than  or . Thus, one usually obtains the reverse 

reaction rate constant from the best measured rate constant and using 
eqK fk bk

eqK
e.g. 

= f
b

eq

kk
K

 

 
if is known at a series of T’s, can be calculated and an apparent EA can be determined 
from an Arrhenius plot. 

fk bk

 

3.8 Steady State Approximation 

When there is a consecutive reaction scheme such as + ⎯⎯→1kA B + ⎯⎯→ +2kC D E F , the 
intermediates are frequently radicals which exist only at very low concentrations. The rate of 
formation and destruction of these radical intermediates is frequently much greater than the 
absolute rate of change of their concentrations. In such a case one can use the “steady-state 
approximation” in order to obtain a rate law that only includes stable species that can be 
more readily measured. 

This approximation says that for a radical intermediate, C, 
[ ]

≈
d C

0
dt

.  In this case one can 

write an expression for [ ]C ss by  
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[ ] [ ][ ] [ ][ ]= −1 2

d C
k A B k C D

dt
 

 
but since at steady-state 
 

[ ]
≈

d C
0

dt
 

 
then 
 

[ ] [ ][ ]
[ ]

= 1

2

A BkC ss
k D

 

 
In this way radicals that are hard to measure can be eliminated from the rate law. 
 
For a steady-state species, a qualitative graph of the species as a function of time looks like: 
 
  
 

 [ ]C   

 

 

 

           
  time 

 
 

3.9 Chain Reactions 

An overall reaction statement can be very misleading since many reactions are actually chain 
mechanisms.  Chain mechanisms have three main parts: 
 
Initiation: usually to form one or more radicals  
 

i.e. 2A 2A→ ⋅  
 
Chain propagation: radicals & stable molecules other radicals & stable molecules →

 
i.e. 2A B AB B⋅ + → + ⋅  
   2B A AB A⋅ + → + ⋅
  2A AB A B⋅ + → + ⋅   
         2B AB B A⋅ + → + ⋅

Usually fast

 
(could also have radical and stable combining to form two radicals such as  

2A C AC C⋅ + → ⋅ + ⋅ , as we will see shortly such reactions are explosive) 
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Chain termination : radical + radical to form stable molecule 
 

2

2

M 2A A M
M 2B B M

+ ⋅ → +

+ ⋅ → +
    pressure dependant  

 
Many apparently simple reactions are actually comprised of chain reactions.  Such chain 
reaction mechanisms are important in initiation of combustion as well as in extinguishment.  
An example of a chain mechanism is given below. 
 

3.10 Hydrogen-Bromine Reaction 

An example of a reaction that appears simple but is a complex chain reaction is the reaction 
to form HBr from hydrogen and bromine as shown below. 
 

+ →
22H Br 2HBr  

 
Despite the simple appearance of this reaction, the experimental rate law has been 
determined to be: 
 

[ ] [ ][ ]
[ ]

[ ]

=
+

1/ 2
1 2 2

2 2

d HBr a H Br
HBrdt

1
a Br

 

 
Clearly, this is not a simple reaction since the simple reaction would give 
d[HBr]/dt=2[H2][Br2].  A more complex reaction scheme has been proposed for this reaction 
to explain this complex rate law as we will see in the next section. 
 

3.11 Proposed Reaction Scheme 

The proposed reaction scheme for formation of HBr from hydrogen and bromine is: 
 
 

 (or hν) 
+ ⎯⎯→ ⋅ +1k

2M Br 2Br M chain-initiation 
 

⋅ + ⎯⎯→ + ⋅

⋅ + ⎯⎯→ +

⋅ + ⎯⎯→ + ⋅

2

3

4

k
2

k
2

k
2

Br H HBr H

H Br HBr B

H HBr H Br

⋅r  chain propagation. 

 
Reverse is Very slow 

 
+ ⋅ ⎯⎯→ +5k

2M 2Br Br M     chain termination. 
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( + ⋅ → +2M 2H H M)   not important at low T 
 
 
Note: since  bond energy 46 kcal/mole and bond energy 104 kcal/mole 2Br 2H
the initiation reaction is always: 
 

→2Br 2Br  
 
We can write an expression for formation of HBr by the propped mechanisms as follows: 
 

[ ] [ ][ ] [ ][ ] [ ][ ]= + −2 2 3 2 4

d HBr
k Br H k H Br k H HBr

dt
 

 
In order to compare the proposed reaction scheme to the experimental rate law given above, 
we can eliminate [ ]H and [ ]Br by using the Steady State assumption and then develop a rate 
law for HBr that depends only on stable species.  Applying the steady state assumption we 
get: 
 

[ ] [ ][ ] [ ][ ] [ ][ ]= − −2 2 3 2 4

d H
k Br H k H Br k H HBR 0

dt
≈  

 
and  
 

[ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]= − + + −
2

1 2 2 2 3 2 4 5

d Br
2k M Br k Br H k H Br k H HBr 2k M Br 0

dt
≈  

 
so 

 
[ ] [ ]

≈ ≈
d H d Br

0
dt dt

 when [H]=[H]ss and [Br]=[Br] ss 

 
We can set the equations for formation of H and Br equal (since they are both equal to zero) 
and eliminate [ ]ss

H to get  
 

[ ] [ ]=
2 1

2ss
5

kBr Br
k

 

 
or 
 

[ ] [ ]=
1/ 21

2ss
5

kBr Br
k

 

 
and then 
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[ ] [ ] [ ]
[ ] [ ]

=
+

2 2ss
ss

3 2 4

k Br H
H

k Br k HBr
 

 
Thus, we get the following rate law based on the proposed chain mechanism: 
 

[ ] [ ][ ]
[ ]
[ ]

⎛ ⎞
⎜ ⎟
⎝ ⎠=

+

1/ 2
1/ 21

2 2
5

4

3 2

k2k H Brd HBr k
k HBrdt

1
k Br

2

 

 
Note, this matches the experimental result with 
 

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1
2

1
1 2

5

ka 2k
k

 

= 3
2

4

ka
k

 

 
Thus, the mechanism is “consistent with” the experimental data and shows the truly complex 
nature of the apparently “simple” reaction for formation of HBr. 
 
Note: at early times [ ] ≈HBr 0 so this rate law gives 

 
[ ] [ ][ ]=

1/ 2
2

d HBr
k H Br

dt
 1 ½ order 

 
 
and at late times 
 

[ ]
>>

2

HBr
1

Br
 

 
so, again the rate is one and a half order: 
 

[ ]
=

d HBr
k

dt
’
[ ][ ]

[ ]

3
2

2 2H Br
HBr

   order 1 ½ 

 
Thus, for complex reactions the order changes with time and is not necessarily integer. 
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3.12 Partial Equilibrium Assumption 

Some rates to interchange species are much faster than the rates that deplete these species. 
In this case a partial equilibrium is observed for the fast reaction. 
 
E.g.  + → +2CO OH CO H

 
[ ] [ ] [ ][= − =2d CO d CO

k CO OH
dt dt

]  

 
[ ]OH
H,OH

is hard to measure, can we eliminate it by using stable species? Assume 

system in partial equilibrium. The reaction 2 2 2,H ,O ,H O
 

2 2
1 1H O O
2 2

+ ⇔ H 

 
and 
 

2 2 2
1H O H
2

+ ⇔ O  

 
are equilibrated. We can write an equilibrium expression as 
 

[ ]
[ ] [ ]

=
2

eq2
OH

2 2eq eq

OH
K

H O
 

 
and 
  

[ ]
[ ] [ ]

=
2

2 eq
H O 1

2
2 2eq eq

H O
K

H O
 

 
Solving for [ ]eq

OH gives 

[ ] [ ] [ ]
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠2

1
221 1 OH2 4

2 2eq
H O

KOH H O O
K

 

 
then 
 

[ ] [ ][ ] [ ]
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦2

1
22 1 12 OH 2 4

2 2
H O

d CO Kk CO H O O
dt K
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This agrees with experimental results. 
 
Exercise 2.2: 
In over ventilated flaming combustion, temperatures in the region where CO is converted to 
CO2 are around 1500C.  In smoldering combustion, the temperatures in the CO to CO2 
conversion region can be as low as 500C.  Assuming that both the flaming and smoldering 
combustion takes place in room air (i.e. 21% O2) and that the [CO]=[H2O].  Using the rate 
expression given above for conversion of CO to CO2, what can you say about the relative 
rates of removal of CO from a smoldering fire as compared with a flaming fire? 
Now assume the flaming fire is under ventilated such that [O2]=1ee-4.  How does this flaming 
rate of CO consumption compared to the other two cases.  What does this tell us about net 
CO production in fires? 
 
 

4.0 Explosion Reactions 

Now that we have reviewed chemical kinetics, we can use this information to look at two 
different types of explosions: 
 
Thermal explosions: exponential increase in rates due to exothermic reactions 
 
Chain Branching explosions: rates increase rapidly due to chain branching 

 

Thermal Explosions 

Thermal explosions occur because of the exponential dependence on temperature of the 
rates of combustion reactions.  In an adiabatic system (i.e. no heat loss) any exothermic 
reaction will cause the environment to increase in temperature.  This increase in temperature 
will cause an increase in reaction rate through the exponential term in the Arrhenius 
expression for the rate constant.  This increase in rate will lead to a still greater increase in 
temperature which will in turn further increase the reaction rate.  Thus, in an adiabatic 
system, initiation of any exothermic reaction will lead to a thermal explosion.  In practice, 
thermal explosions involve a trade-off between heat gain from the reaction and heat loss to 
the surroundings.  As we will see below, this model of the thermal explosions will be useful in 
examining ignition of flames and in understanding the process of self-heating. 
 

Chain Branching Explosions 

A chain branching explosion is one that occurs isothermally as a result of the generation of 
radicals (it is similar to a nuclear chain reaction).  As an example, let us consider a 1 cc 
container at room temperature and pressure that supports a chain reaction. 
 
Example: 1cm3 container with 1 chain particle i.e. radical  
At normal conditions, = 19N 10V molecules/cc and Z=108 collisions/sec.  

We can define a chain branching ratio, α, such that α is the number of radicals that are 
generated for each radical that reacts in a chain branching reaction. 
i.e.  R + S -> αR + S’ 
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For the case of a chain carrying reaction, α =1.0 (i.e. 1 radical creates 1 radical). 
 
We can then calculate how long it will take for all of the molecules in our 1cc of gas to react: 
 

t = = ≈
19

11
8

10 coll 10 sec 30,000yearscoll10 sec
 

 
Now if α = 2.0 we have a condition where we are multiplying the number of radicals with 
each collision such that the number of generation of collisions necessary for all molecules to 
react is given by the expression 

+ −
=

−

N 1
192 1 10

2 1
molecules 

 
solving gives N=64 generations of collisions for all molecules to react, therefore in this case Z 
= 64 collisions x 10-8 sec/collision ≈ 10-6 sec = 1μsec 
 
Thus, if the reaction is exothermic or creates more molecules of products than reactants, the 
system is explosive.  However, even a small branching ratio, α, can cause an explosive 
result.  Consider the case where α = 1.01. 
 
For α = 1.01 the number of generations of collisions is given by: 
 

+ +α −
= =

α −

N 1 N 1
191 1.01 10

1 0.01  

Solving for N gives N = 3934 which leads to a time for the complete reaction in 1 cc of  
 

t ≈ 40 μsec 
 

So even for very low branching ratio, α, reaction is very fast. 
 

Chain Explosion Mechanism 
 
Let us now examine more closely a chain explosion mechanism using our understanding of 
kinetic mechanisms and reactions.  Consider the following chain explosion mechanism 
where P is a stable product, R is a radical and α is the chain branching ratio (i.e. the number 
of radicals generated for each radical consumed in the chain branching reaction): 
 

⎯⎯→1kM R   initiation reaction 
∗+ → α +R M R M  chain-branching 

 
+ ⎯⎯→ +3kR M P R  
⎯⎯→4kR M  wall   chain termination 
⎯⎯→5kR  non reactive      

 

21 



Module 2: Chemical Kinetics 

In this mechanism, some of the reactions of radicals lead to chain termination, so the 
determining factor for whether this system will be explosive or not is the relative rates of the 
branching reaction and the chain terminating reactions.  We can analyze this mechanism to 
determine the value of α that is necessary in order to cause an explosion.  We can write the 
following rate expressions: 
 

[ ] [ ][ ]= 3

d P
k R M

dt
 

 
[ ] [ ] ( )[ ][ ] [ ][ ] [ ]= + α − − −1 2 4 5

d R
k M k 1 R M k M R k R

dt
 

 
and apply the steady-state assumption on R 

 

[ ]
=

d R
0

dt
 

 

[ ] [ ]
[ ] ( )[ ]

=
+ − α −

1
ss

4 5 2

k M
R

k M k k 1 M
 

 
then 
 

[ ] [ ]
[ ] ( )[ ]

=
+ − α −

2
1 3

4 5 2

d P k k M
dt k M k k 1 M

 

 
Examination of this expression shows that when the denominator → explosive, since 
the rate of production of product will be infinite.  So we can solve for a when the denominator 
is zero to get the critical α for the system to be explosive. 

⇒0

 
( )

[ ]
+

α = + 4 5
crit

2

k M k
1

k M
 

 
thus 
 

α ≥ αcrit  chain-branch explosion 
α < αcrit  no explosion 
 

In summary, chain branching explosions occur when the rate of generation of radicals 
exceeds their rate of removal by chain terminating steps.  As can be seen in the expression 
for αcrit above, the value of αcrit can change as a result of changes in temperature (through 
the rate constants) or changes in pressure (through the value of [M]).  Thus, a system that is 
not explosive at one temperature or pressure can become explosive at another condition. 
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5.0 Ignition 

Thermal Homogeneous Ignition 

The ignition of gaseous mixtures often can be explained in terms of a thermal explosion 
model based on an energy balance on the fuel/oxidizer mixture as we discussed above.  The 
overall combustion reaction is exothermic, which increases the gas temperature.  Since the 
reaction rate increases with temperature, the overall energy release rate tends to increase, 
which results in a further increase in temperature and a subsequent acceleration of the 
reaction.  Hence, the thermal model assumes that ignition (explosion) occurs as a result of 
self-heating.  In an adiabatic system, the occurrence of any exothermic reaction always 
results in thermal ignition.  However, in non-adiabatic systems heat losses remove some of 
the energy released by the chemical reaction.  If those losses are sufficiently high, the 
temperature of the reacting mixture will decrease and the reaction will be quenched and 
ignition will not occur. 
 
A simple description of the thermal ignition processes involves writing the energy equation 
for a homogeneous fuel-oxidizer mixture in an enclosed vessel of volume, V, immersed in a 
bath of uniform and constant vessel wall temperature, To.  
 
 
 

To  
 Fuel  + 

Oxygen  

 

 

 

{ ( )
•

− ρ − − =
1424314243

r v
Generation Loss

Storage

dTq V C V hS T T 0
dt o       (M2-1) 

 
Here, the heat added is given by the fuel consumed times the heat of combustion as: 
 

[ ]• •

= − Δ = − Δo o
r f C

d F
q C H H

dt C   

 
and the rate of consumption of the fuel is given by the global reaction rate of the fuel and 
oxidizer as: 
 

( ) [ ] [ ] [ ] ( )•
− −−

− = = =
m nE RT E RTm n b b

f f o

d F
C C C AT e F O AT e

dt
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The storage term is given by the increase in the temperature times the heat capacity and the 
loss term is given by a heat transfer coefficient times the surface area of the vessel and the 
temperature difference between the gas temperature and the wall temperature. 
For an isothermal system, =dT dt 0 , and ignition can occur only by chain initiation. For an 

adiabatic system, the heat loss term is zero, and >dT dt 0 . Since 
•

rq is a monotonically 
increasing function of temperature, the system always exhibits explosive behavior. In 
practice, systems are between these two extremes, and whether explosions occur or not 
depend on the relative magnitude of the heat generation and heat loss terms. We can rewrite 
equation (M2-1) by dividing by the volume, V, as: 
 

{ ( )
•

ρ = − −
1424314243

v r o
dT hSC q T T
dt V

 
EnergyGeneration

EnergyLossStorage

 
•

lqor taking the energy loss term as , as 
 

• •

ρ = −rv l
dTC q q
dt

 

 

Hence, for a thermal explosion to occur, >dT dt 0,which implies 
• •

>r lq q  
 

For a fixed reactant concentration and 
hS
V

 (i.e. geometry dependant), we can plot 
•

rq  and 
•

lq  

as functions of T, the temperature of the reactant mixture. 
 
 
 •

q 
 
 
 
 
 
 

Stable 

••

= lr qq 
 
 
 
 
 
 

1T 2T 3T cT T
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As shown in the figure, for a given To, 
•

lq  is a linear function of T (i.e. the straight lines on the 

graph), while  is exponential in T due its dependence on the reaction rate (i.e. the curve 

on the graph).  For To = T3,   always exceeds 

•

rq
•

rq
•

lq  and an explosion always occurs.  For To 
= T1, two possible solutions exist fro the point at which the energy lose equals the energy 
gain, a stable solution corresponding to a slow reaction and a meta-stable solution.  At the 
stable condition any perturbation in T tends to alter the energy balance in a way which will 
restore the system to the initial condition.  At the meta-stable point, any perturbation will 
cause a departure either to the slow reaction condition or to explosion.  Physically, slow 
reaction (stable solution) is most likely and, hence, for T1 there will be no ignition.  The 
situation for T = T2 represents the boundary between the two cases described above, and 

hence defines the critical ignition condition. For To < T2, 
• •

<rq ql  and there will be no ignition.  

For To ≥ T2, and ignition will always occur. Hence, To = T2 represents the minimum To 
for ignition.  The tangency point, where To = TC is termed the critical point, and TC is termed 

the critical (spontaneous) ignition temperature.  For T = TC, 

• •

q≥rq l

• •

=r lq q . 
 
Increasing the energy loss can result in an explosive situation becoming non-explosive due 
to quenching. Since, 
 

( )
•

= −l o
hSq T T , 
V

 
an increase in S/V, surface/volume ratio (i.e. a decrease in vessel size) or in the heat transfer 
coefficient, h, can lead to quenching.  This can be seen in the figure below where increasing 
the heat transfer coefficient or the surface to volume ratio changes the slope of the loss line 
such that a condition that was initially explosive becomes non-explosive. 
 
 
 

rq
•

lq
•

 
 •

q 
 
 
 

 

 

 

 
T 

Increasing 
V
hS
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For a fixed To and reactant concentration (stoichiometry and pressure), there is a minimum 
vessel size below which explosion cannot occur. The characteristic dimension of the critical 
vessel is termed the quenching distance. Note that the flammability characteristics of a 
fuel/oxidizer mixture depend on vessel geometry. 
 

For a fixed heat loss parameter, 
hS
V

, fuel/oxidizer ratio and To, increasing pressure will 

increase  
•

rq
 

( )
•

+ +≈ ≈ ≈m n m n m n m n
r f o total f oq C C C x x p  

 
Hence, in general, thermal explosion theory predicts an increasing tendency to ignition 
(explosion) with increasing pressure.  
 

Since depends on  (which depends on stoichiometry), explosion limits will depend on 

stoichiometry.  A plot of  versus stoichiometry is shown below. 

•

rq Δ o
RH
Δ o

RH
 

Fuel / Oxidizer

Stoichiometric

o
RHΔ 

 
 
 
 
 
 
 
 
 
 
 
 
Hence, the tendency for explosion is greatest near the stoichiometric fuel/air ratio.  Lean and 

rich mixtures have reduced .  As the mixture becomes very lean or very rich,  

decreases to the point that and explosion is not possible for the given P, To and 

Δ o
RH

• •

<rq

•

rq

lq
hS V , and the mixture lies outside the explosion limits.  The explosion limits occur at both 

the rich and lean limits for . 
• •

=r lq q
 

6.0 Self-Heating 

You have probably heard of the classic problem of oil soak rags self-heating to spontaneous 
combustion.  Now that we have reviewed chemical kinetics and ignition we are ready to 
apply our knowledge to understanding the process of self-heating.  We would like to be able 
to understand why some system self-heat but others do not.  This is particularly confounding 
when the systems appear to be similar.  For example, why is a pile of rags that have been 

26 



Module 2: Chemical Kinetics 

used to stain wood likely to spontaneously combust and a similar pile of rags covered with 
motor oil unlikely to combust?  To answer this and similar question, we need to understand 
the process that governs self-heating. 
 
Spontaneous ignition of a fuel results from the self-heating of the material induced by a 
chemical reaction that produces more heat than the heat losses.  This process is very similar 
to a thermal explosion and we will see that we can use the theory of thermal explosions to 
understand and analyze the process of self-heating.  As with thermal explosions, self-heating 
to spontaneous ignition is governed by a balance between heat losses to the surroundings 
and heat gain from the self-heating reaction.  The energy balance is given in mathematical 
terms as (note λ is used for thermal conductivity to differentiate it from the rate constant, k): 
 

⎛ ⎞−
⎜ ⎟
⎝ ⎠

⎡ ⎤∂ ⎛⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ρ = ρ + − λ +
⎞

⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟Δ −∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦14442444314243 14444444244444443

c

2 2E
RTo m n bp p 2 2

c f o

GenerationStorage Losses

T T T T TC C u vH AC C T et x y x y  

 
Just as in the case of homogeneous thermal ignition, ignition by self-heating involves a 
balance between heat generation by an exothermic reaction and heat loss to the 
surroundings.  As with thermal explosions, if the system has an exothermic reaction (no 
matter how slow) and the system is adiabatic (i.e. no heat losses), the system will always 
self-heat to spontaneous combustion.  However, in the real world, there are always heat 
losses so many slow exothermic reactions do not lead to spontaneous combustion.  By 
solving the energy balance given above we can determine if a system is capable of self-
heating. 
 
This equation is very complex and cannot be readily solved for real geometries. To simplify 
the problem, Frank-Kamenetski proposed that self-heating generally occurs in the interior of 
piles of materials such that convective heat loss is small compared to conductive heat loss.  
Therefore, Frank-Kamenetski theorized that the critical condition for spontaneous ignition 
was the temperature where conduction heat losses from the pile are just equal to the energy 
generated by the combustion reaction.  In Frank-Kamenetski’s analysis, the critical 
temperature for self-heating to spontaneous combustion is obtained through the solution to 
the following equation: 
 

⎛ ⎞−
⎜ ⎟
⎝ ⎠⎛ ⎞∂ ∂

λ + + Δ =⎜ ⎟∂ ∂⎝ ⎠
c

E2 2
RTo m n

c f o2 2
T T H C C e 0

x y
      (M2-2) 

 
This form of the energy balance includes a more realistic model of heat transfer within 

the reacting solid  (or pile) by incorporating Fourier’s law of heat conduction which allows for 
variations of temperature within the self-heating body to be calculated.  Unfortunately, this 
approach still requires the solution of a non-linear partial differential equation.  Inherent in 
this form of the energy equation and Frank-Kamenetski’s solution are the following 
assumptions.   

 
• The material is homogeneous and it properties do not change with temperature; 
• Sufficiently large heats of reaction and activation energies such that E/RT>>1; 
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• Self-heating reaction can be characterized by a single global reaction with an 
Arrhenius rate; 

• Neglects fuel consumption (i.e. there is an unlimited supply of fuel during the self-
heating process); 

• Boundary condition T = Tambient on walls of boundary (i.e. assumes instantaneous 
transfer of heat from surface of the body to the surroundings); 

 
Equation (M2-2) is still not readily solved analytically.  However, by using an approximation 
to the Arrhenius function, the modified equation can be solved analytically for a one-
dimensional infinite slab of material.  This same approximation was later shown to hold for an 
infinite cylinder.  Equation (M2-2) can be recast by using parameters that non-dimensionalize 
the equation.  The non-dimensional temperature is given by θ as: 
 

( )−
θ = a

2
a

E T T
RT

        (M2-3) 

 
A dimensionless parameter, δ, called the Frank-Kamenetski parameter is defined as: 

 
( )−Δ

δ =
λ

aEa RTo m n 2 b
c f o

2
a

Ea H AC C r T e
RT

      (M2-4) 

 
where r is defined as one-half of the smallest dimension of the body (e.g. radius of cylinder or 
sphere, half-width of a slab).  Using these non-dimensional parameters, equation (M2-2) 
becomes: 
 

( )θ⎛ ⎞∂ θ ∂ θ
+ + δ =⎜ ⎟∂ ∂⎝ ⎠

2 2

2 2 e
x y

0        (M2-5) 

 
with the boundary condition that θ = 0 at the boundary of the pile.   
 
Solutions of Equation (M2-5) exist (i.e. an ambient temperature Ta that corresponds to a 
given thickness δ) for the boundary condition when δ ≤ δcritical where δcritical is some number 
depending on the shape of the body only.  Values of δcritical for various geometries are listed in 
the following table. 
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TABLE M2-1.  Values of δcritical, for several different geometries. 

GEOMETRY DIMENSIONS δcritical 
Infinite Plane Slab Width 2r 0.878 
Rectangular Box Sides 2l, 2r, 2m 

r < l, m 
0.873 
(1 +r2/l2 + r2/m2) 

Cube Side 2r 2.52 
Infinite Cylinder Radius r 2.00 
Equi-cylinder Height 2r, radius r 2.76 
Sphere Radius r 3.32 
Infinite Square Rod Side 2r 1.700 

 
Thus, when δ = δcritical, Ta = Tc.  That is, the ambient temperature that leads to a δ equal to the 
δcritical  is the self-heating condition for that system.  Any δ > δcritical, will lead to a thermal 
explosion, i.e. to spontaneous combustion. 
 
Examination of equation (M2-4) shows that for a given system (e.g. linseed oil on cotton 
rags) the only variable in δ (other than T) is the pile size r.  Thus, self-heating problems 
depend both on the kinetic properties of the system and the pile size.  For a given material 
that is capable of self-heating, there generally exists a minimum pile size r at a given ambient 
temperature in order to cause self-heating to spontaneous combustion.  For example, while 
linseed-soaked cotton rags will self-heat to ignition at room temperature in a pile as small as 
a foot in diameter, the cotton rags themselves wood require a pile size of approximately 100 
meters on a side. 
 
So, how do we determine if a given system is prone to self-heating?  Once the geometry of 
the system to be examined is established, δcritical, can be determined from Table M2-1 above.  
Next, using the appropriate kinetic parameters, ambient temperature, Ta, and pile size, r, δ 
can be calculated and compared with δcritical.  If δ > δcritical, the system is capable of self-
heating to spontaneous combustion.  If δ < δcritical, the system will not self-heat to 
spontaneous combustion.  It should be noted that systems for which δ < δcritical, can still 
exhibit self-heating.  That is some temperature rise will occur in the pile.  However, at some 
point as the temperature rises in the pile, the rate of heat loss to the ambient increases.  In a 
sub-critical condition, the heat loss will ultimately equal the heat gain by the self-heating 
reaction and the temperature will cease to rise.  Thus, evidence of self-heating alone is not 
proof that a given system is capable of spontaneous combustion. 
 
Kinetic properties for different materials are usually determined experimentally.  The 
activation energy for the sled-heating reaction can be determined by measuring the critical 
temperature for a given material in a given geometry and range of pile sizes.  Then, the 
complex dependence of the critical condition on Ta is dealt with by rearranging Equation (M2-
5) and taking natural logarithms as follows: 
 

( )−⎡ ⎤⎡ ⎤δ Δ
= −⎢ ⎥⎢ ⎥ λ⎢ ⎥⎣ ⎦ ⎣ ⎦

a,criticalE RT2 o m n b
critical a c f o

2
a,critical

T E H C C AT e Eln ln
r R RT
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from which it can be seen that a plot of ( )2
criticala,ln T / rΔ 2  against 1/Ta, critical will be a straight 

line with a slope of –E/R and an intercept ( )−⎡ ⎤Δ λ δ⎣ ⎦
a,criticalE RTn

o criticalAe / Ro m
c fln H EC C .  This plot 

is analogous to an Arrhenius plot for determination of the activation energy of a reaction. 
 
 
Discussion Question: 
The Bowes Decorating Company debuted a very successful line of holiday decorations last 
year.  These decorations are constructed from a mixture of sawdust and a polyurethane-
based epoxy that is molded into a variety of shapes.  The largest of these decorations is a 
Santa Claus figurine, whose big spherical belly is almost 36 inches in diameter.  These 
figurines where shipped throughout the country last year and were well received by 
consumers.  Due to the success of these decorations, the product line was expanded to 
include an even larger Frosty the Snowman figurine, whose largest snowball is 44 inches in 
diameter.  However, several instances have been reported back to The Bowes Decorating 
Company where boxes containing the Frosty the Snowman figurine were opened to find the 
smoldering remnants of the product.  Obviously, distributors of the figurines refused to 
accept further shipments of these products, fearing that a fire may result in a distribution 
warehouse.  As a Fire Protection engineer, you have been called on to determine why these 
events were occurring, and why this problem had not surfaced previously. 
 
Self-heating of the sawdust mixture is an obvious consideration.  In order to analyze this 
possibility, it is important to understand the process in which the figurines are made.  The 
Bowes engineers report that in the manufacturing process, the internal temperature of the 
sawdust and glue mixture reached temperatures of 90 °C during curing of the epoxy.  To 
further investigate the possibility of self-heating, you ordered standard tests of the 
sawdust/glue mixture (i.e. test to determine the critical temperature for three different size 
cubes of the material in a temperature controlled oven).  You received the following data 
back from the Elfin Magic Fire Science laboratory: 
 

Cube Size, 2r (mm) Critical Temperature (°C) 
25.4 212 
51 185 
76 173 

 
  Table 1.Self-heating Test Data for Bowes Decorating Co material 
 
Using this data, determine whether or not self-heating is a plausible explanation for the 
smoldering problems with the Snowman figurine.  If it is, discuss why it was not a problem 
with the Santa Claus.  If it is not a plausible explanation, discuss alternative theories for the 
reported problem (feel free to ask for additional information during your discussion).  If, in 
your professional opinion, self-heating is the cause, discuss remedies that you would 
propose to The Bowes Decorating Co. 
 
Hint: remember that the relationship between Temperature, T, the critical Frank-Kamenetskii 
parameter, δc, and the characteristic dimension of a pile of material is of the form: 

T
BA

r
Tc −=2

2

ln
δ
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Instructions: 
Use the M2-Self-heating discussion space to exchange ideas, data and ask more questions 
about the situation.  Discuss this with your colleagues and present your professional opinion 
as to what may have caused it and how to remedy it. 

 
 

7.0 Module 2 Assignment 

In completing this assignment, you should show all work. The approach that you use is the 
essential part of developing a solution, where obtaining the correct answer in these 
assignments is only of modest importance. 
 

Formats for submitting assignments  

Problems that are due on the same date can be completed in one document and submitted 
as one electronic file. You may complete your assignment in the following formats: word 
processed (.doc, .rtf, .pdf, etc.) or scanned. 
 
Due Dates:  
 

See Class Schedule 
 
Total Points: 10 
 

All problems can be found in the m2_problems.doc in the assignment for module 2. 
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